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Abstract. Much of the current paleobiological knowledge on titanosaur sauropods was attained in just the last fifteen years, in particular that
related to reproductive and developmental biology. Recent years have also seen progress on other poorly explored topics, such as pneumati-
city, muscle architecture and locomotion, and endocast reconstruction and associated structures. Some titanosaurs laid numerous, relatively
small Megaloolithidae eggs (with diameters ranging from 12 to 14 cm) in nests dug in the ground and, as known from the South American re-
cords, probably eggs of the multispherulitic morphotype. During ontogeny, certain titanosaurs displayed some variations in cranial morpho-
logy, some of them likely associated with the differing feeding habits between hatchlings and adults. The bone tissue of some adult titanosaurs
was rapidly and cyclically deposited and shows a greater degree of remodeling than in other sauropods. Saltasaurines in particular show evi-
dence of postcranial skeletal pneumaticity in both axial and appendicular skeleton, providing clues about soft tissue anatomy and the struc-
ture of the respiratory system. Titanosaurs, like all sauropods, were characterized by being fully quadrupedal, although some appendicular
features and putative trackways indicate that their stance was not as columnar as in other sauropods. These anatomical peculiarities are sig-
nificantly developed in saltasaurines, a derived group of titanosaurs. Compared with other sauropods, some titanosaurs seem to have had
very poor olfaction but would have been capable of capturing sounds in a relatively wide range of high frequencies, although not to the extent
of living birds.
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Resumen. PALEOBIOLOGÍA DE TITANOSAURIOS DE SUDAMÉRICA: REPRODUCCIÓN, DESARROLLO, HISTOLOGÍA, NEUMATICIDAD, LOCO-
MOCIÓN Y NEUROANATOMÍA. El conocimiento paleobiológico de los saurópodos titanosaurios, particularmente su reproducción y biología del
desarrollo, fue alcanzado recién en los últimos quince años. En estos últimos años también se ha avanzado en temas poco explorados hasta
el momento, como la neumatización, su arquitectura muscular y locomoción y la reconstrucción de partes blandas como el cerebro y estruc-
turas asociadas. Algunos titanosaurios depositan sus numerosos y pequeños huevos megaloolitidos en nidos excavados sobre el suelo. Du-
rante la ontogenia ciertos titanosaurios exponen algunas variaciones en su morfología craneana, algunas de estas probablemente asociadas
con las diferentes maneras de alimentarse que tendrían los juveniles y los adultos. El tejido óseo de algunos titanosaurios adultos se habría
depositado rápido y cíclicamente, exponiendo una mayor remodelación que en otros saurópodos. Los titanosaurios, particularmente los sal-
tasaurinos, exponen una neumaticidad postcraneal en el esqueleto axial y apendicular, este carácter permite inferir la anatomía de sus tejidos
blandos y de su sistema respiratorio. Los titanosaurios, como todos los saurópodos, estaban caracterizados por ser cuadrúpedos, aunque
algunos caracteres apendiculares y las huellas indican que su postura no habría sido tan columnar como en otros saurópodos. Aquellas pecu-
liaridades anatómicas están notoriamente desarrolladas en los saltasaurinos, un grupo de titanosaurios derivados. Comparado con otros sau-
rópodos, algunos titanosaurios parecen haber tenido un pobre sentido del olfato, sin embargo estos habrían tenido la capacidad de captar
sonidos de alta frecuencia en un rango relativamente amplio, aunque no tanto como las aves actuales.

Palabras clave. Titanosaurio. Neuroanatomía. Histología. Neumaticidad. Dentición. Reproducción. Embriones. Locomoción.
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TITANOSAURIA, defined by Wilson and Upchurch (2003) as

the group formed by all descendants of the more recent

common ancestor of Andesaurus Calvo and Bonaparte,

1991, and Saltasaurus Bonaparte and Powell, 1980, reached

a nearly world-wide distribution by the Late Cretaceous

(Salgado et al., 1997; Powell, 2003; Curry Rogers, 2005).

This group is represented by more than 30 genera and is

the geographically most widespread among sauropods.

It inhabited all landmasses, i.e., current Asia (e.g., Nemegto-

saurus Nowinski, 1971; Isisaurus colberti Jain and Bandyo-

padhyay, 1997), Africa (e.g., Rapetosaurus Curry Rogers and

Forster, 2001), Europe (e.g., Lirainosaurus Sanz et al., 1999;

Ampelosaurus Le Loeuff, 1995), North America (e.g., Alamo-

saurus Gilmore, 1922), Australia (e.g., Diamantinasaurus

Hocknull et al., 2009) and Antarctica (Cerda et al., 2011).

However, it is in South America where titanosaur remains

are more common and most diverse. Anatomical and

phylogenetic studies on this diverse group of sauropod di-

nosaurs embrace an extensive list of important contribu-

tions, which started in South America with Lydekker’s

pioneering work on Patagonian dinosaurs (Lydekker, 1893),

followed by the classic von Huene monograph on Argen-

tinean saurischians and ornithischians (Huene, 1929), and

reaching the present day with the contributions of Powell

(1986, 2003), Salgado et al. (1997) and García and Salgado

(2013) in Argentina. The Brazilian titanosaurs have been

well known since the late twentieth century (Powell, 1987a;

Campos and Kellner, 1999; Kellner and Azevedo, 1999;

Campos et al., 2005; Santucci and Bertini, 2006; Salgado and

Carvalho, 2008, and Machado et al., 2013 among others),

whereas the Chilean titanosaur record is scarce and only

recently reported (Kellner et al., 2011).

Paleobiological studies on titanosaurs, although less

numerous, experienced an important expansion over the

last years (see Sander et al., 2008, 2010). Some lines of re-

search, particularly those related to reproductive and de-

velopmental biology, were triggered by the discovery in

1997 of the fossil nesting-site known as Auca Mahuevo in

Patagonia (Argentina) and the report of the first undis-

putable association of fossil eggs with titanosaur embryos

(Chiappe et al., 1998, 2001; Salgado et al., 2005; García et

al., 2010). Currently, a large number of articles and papers

about the paleobiology of titanosaurs are available inclu-

ding aspects such as reproduction (e.g., Chiappe et al., 2004;

Simón, 2006; Salgado et al., 2009; Grellet-Tinner et al.,

2012; Fernández et al., 2013), development (e.g., Chiappe et

al., 2001; Salgado et al., 2005; García, 2007a; García et al.,

2010), histology (e.g., Sander et al., 2006, 2011; Woodward

and Leehman, 2009; Cerda and Powell, 2010; Cerda and

Salgado, 2011; Company, 2011; Klein et al., 2012), pneu-

maticity (e.g., Wedel, 2007, 2009; Cerda et al., 2012), loco-

motion (e.g., Wilson and Carrano, 1999; Otero and Vizcaíno,

2008; Hohn, 2011; Otero, 2011) and neuroanatomy (e.g.,

Witmer et al., 2003, 2008; Paulina Carabajal, 2012). To a

certain extent, some of the issues dealt with in those

publications are complementary to each other, particularly

osteohistology and developmental biology, because the

bone-histology of a given organ usually reveals major as-

pects of its genesis, including information on the rate and

timing of bone deposition (Sander, 2000).

Here we review and expand recent progress made by

our research group on paleobiological aspects of titano-

saurs, focussing on South American materials, and particu-

larly on those coming from Patagonia. The goal of this

work is to provide a synthesis and a critical appraisal of the

current knowledge on titanosaur paleobiology obtained

from South America and particularly from the Argentinean

record over the last fifteen years, integrating as far as pos-

sible diverse aspects such as reproduction, development,

osteohistology, pneumaticity, locomotion, and neuro-

physiology. For example, the eggs undoubtedly assignable

to titanosaurs are restricted to some Late Cretaceous lo-

calities; paleohistological studies on titanosaur bones are

few; the known and studied braincases are scarce and

biomechanical analyses are only just beginning. Neverthe-

less, in spite of these limitations recent discoveries and

studies on South American –and particularly Patagonian–

titanosaurs provide some information that is relevant for

understanding some paleobiological aspects of this clade.

Institutional abbreviations. CRILAR-Pv, Centro Regional de

Investigaciones Científicas y Transferencia Tecnológica de

La Rioja, Argentina, vertebrate paleontology collection;

MACN-RN, Museo Argentino de Ciencias Naturales “Ber-

nardino Rivadavia”, Buenos Aires, Argentina, vertebrate pa-

leontology collection; MAU-Pv, Museo “Argentino Urquiza”,

Rincón de los Sauces, Neuquén, Argentina, vertebrate pa-

leontology collection; MCF-PVPH, Museo “Carmen Funes”

de Plaza Huincul, Neuquén, Argentina, vertebrate paleonto-
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logy collection; MCS-Pv, Museo de Cinco Saltos, Río Negro,

Argentina, vertebrate paleontology collection; MGPIFD-GR,

Museo de Geología y Paleontología del Instituto de Forma-

ción Docente de General Roca, Río Negro, Argentina; MLP-

CS, Museo de La Plata, Cinco Saltos collection, La Plata,

Argentina; MLP-Ly, Museo de La Plata, Lydekker's collec-

tion, La Plata, Argentina; MML-Pv, Museo Municipal de La-

marque, Río Negro, Argentina, vertebrate paleontology

collection; MPCA-Pv, Museo Provincial “Carlos Ameghino”,

Río Negro, Argentina, vertebrate paleontology collection;

MUCPh, Museo de Geología y Paleontología de la Univer-

sidad Nacional del Comahue, Neuquén, Argentina, paleo-

histology collection; PVL, Colección de Paleontología de

Vertebrados de la Fundación-Instituto "Miguel Lillo", Tucu-

mán, Argentina; UFRRJ, Universidade Federal Rural de Río

de Janeiro, Seropédica, Brazil.

TITANOSAUR REPRODUCTION

Eggs and nests

The amniote egg is one of the most significant novelties

in the evolutionary history of vertebrates. The finding of

whole eggs containing embryos is undoubtedly the only

case that allows making a direct connection between the

egg and its biological producer. However, this is rarely the

case, and for this reason, different authors have developed

a specific classification system for eggshell, using para-

taxonomy (Mikhailov, 1991; Mikhailov et al., 1996). This

system allows comparisons of different types of eggshells

without embryonic remains from all around the world

(Fernández and Khosla, 2015).

The hypothesis that sauropods were oviparous was first

confirmed by the discovery of hundreds of eggs containing

embryos in Auca Mahuevo (Neuquén Province, Argentina)

(Chiappe et al., 1998, 2005) and India (see Wilson et al.,

2010). These discoveries allowed for the first time the link-

age of a certain parafamily of fossil eggs –Megaloolithidae

(Zhao, 1979) (Fig. 1)– to a specific clade of sauropods, i.e.,

Titanosauria (Chiappe et al., 2001, 2004; Wilson et al., 2010).

Some authors claimed that megaloolithids were also laid by

other types of dinosaurs (Kohring, 1989; Grigorescu, 2010)

based upon rather disputable evidence, regarding which

Grellet-Tinner et al. (2012) interpreted allochthony of

those megaloolithid eggshell and hadrosaur remains found

in Romania. Other types of fossil eggs were also assigned

to titanosaurs in spite of the lack of associated embryos.

Among these types are those recorded in Patagonia and

Entre Ríos Province (Argentina), and Uruguay, with eggshells

of the multispherulitic morphotype (Powell, 1992; Faccio,

1994). These are characterized by small spherulites that

grow as long, mutually competing, narrow prisms, and ad-

jacent prisms forming a network of irregular, crystaline

walls that surround numerous large pore canals (Mones,

1980; Powell, 1985, 1987b, 1992; Mikhailov, 1991; Faccio,

1994; Manera de Bianco, 1996; Casadío et al., 2002; de

Valais et al., 2003; Simón, 2006) (Fig. 1.7–8). In contrast,

megaloolithid eggshells belong to the so-called tubosphe-

rulitic morphotype, with shell units sharply separate from

each other throughout the eggshell thickness. These fan-

like shell units can be traced up to the surface of the

eggshell and the accretionary lines are semiconcentric

(Mikhailov et al., 1996) (Fig. 1.3–6). Recent studies on similar

eggs found in northwestern Argentina (La Rioja Province)

(Tauber, 2007; Grellet-Tinner and Fiorelli, 2010) (Fig. 2.1–

2) revealed that their eggshells display microscopic and

ultrastructural characteristics somewhat resembling those

of the megaloolithids found in Auca Mahuevo.

Megaloolithid eggs collected in Auca Mahuevo are

spherical to subspherical, as are other megaloolithids found

elsewhere, with diameters ranging from 12 to 14 cm, and

eggshell thicknesses varying between 1.00 mm and 1.78

mm, with an average thickness of 1.4 mm (Chiappe et al.,

1998) (Fig. 3.1–3). The smallest megaloolithid recorded

up to date in Patagonia comes from the Salitral de Santa

Rosa area (Río Negro Province), with a diameter of 9.42 cm

(Salgado et al., 2009) (Fig. 1.1). However, eggs of this type

collected from other continents are normally larger (con-

sider, for instance, the megaloolithids of “titanosaurid-type

III” from India, and Megaloolithus siruguei Vianey-Liaud et al.,

1994 from France, with diameters of up to 20 cm) (Vilá et

al., 2006; Sander et al., 2008). As noted above, Argentinean

and Uruguayan eggs of the multispherulitic morphotype

are invariably larger than the Argentinean megaloolithids,

reaching diameters of 18–21 cm in Salitral de Santa Rosa-

Salitral Ojo de Agua (Río Negro Province) (Powell, 1992;

Salgado et al., 2007), and have invariably much thicker

eggshells, exceeding 6 mm in thickness at these localities

(Salgado et al., 2007), and reaching a maximum thickness of

7.94 mm in Sanagasta (Grellet-Tinner and Fiorelli, 2010)
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(Fig. 2.3–5). The Sanagasta nesting site shed insights on the

reproductive behavior of a group of titanosaurs, suggesting

colonial behavior and site fidelity with possible phylopatry

(Grellet-Tinner and Fiorelli, 2010). Geological, paleonto-

logical and taphonomic evidence (Fiorelli et al., 2012, 2013)

suggests that the Sanagasta titanosaurs chose a hydro-

thermal area as nesting-ground, an opportunistic environ-

ment-dependent reproduction relationship with a geo-

thermally active paleoenvironment, and an examination of

the biological adaptation of the egg is warranted in this

context (Grellet-Tinner et al., 2012). These authors hy-

pothesized the outer eggshell surfaces of the eggs in the

hydrothermal substrate display thick eggshells which

were thinned by dissolution and acidification, a process that

had a great effect on the physiology, development and

therefore on the progressive incubation of the embryos.

The presence of extremely thick eggshells in eggs laid in

geothermal environments represents a natural reproduc-

tive adaptation to resist chemical dissolution in this extreme

environment by buffering external acidic hydrothermal

fluids (Grellet-Tinner et al., 2012).

In Salitral de Santa Rosa and Salitral Ojo de Agua, as well

as in Sanagasta, thin (megaloolithids) and thick-shelled eggs

(those of the multispherulitic morphotype) are found in the

same levels and paleoenvironments (Salgado et al., 2007).

However, in these sites there is no evidence of hydrother-

mal structures, although more research is needed on this

subject. At most, the hypothesis proposed for explaining the

thick eggshell of the eggs from Sanagasta does not repre-

sent a generalized case and could not be valid for the thick-

shelled eggs from Patagonia. Although it is also true that

reliably unknown environmental factors nesting sites in

Patagonia are unknown.

The occurrence of external nodes in the megaloolithid

eggshell (Fig. 1.2) and in eggshells of the multispherulitic

morphotype from Patagonia, Entre Ríos, La Rioja and

Uruguay (Fig. 2.3), provide some clues to the reproductive

behavior of titanosaurs. Some authors suggest that most

non-avian dinosaurs buried their eggs completely, or that

their eggs were eventually covered with vegetal matter, in

view of their high shell porosity (Seymour, 1979; Sabath,

1991; Grigorescu et al., 1994; Deeming, 2002, 2006). In the

case of the megaloolithid-laying titanosaurs, however,

this is not obvious. Although the conductance of their eggs

is in general higher than that of bird eggs (almost all birds do

not bury their eggs), it is much lower than that of other di-

nosaurs except Megaloolithus patagonicus Calvo et al., 1997

(Grellet-Tinner et al., 2012) and perhaps in Megaloolithus

siruguei. In agreement with their relatively low conductance,

lithological and paleoichnological data suggest that the

megaloolithid eggs from Auca Mahuevo would have been

hardly buried (Jackson et al., 2008; Sander et al., 2008;

Vilá et al., 2010b). This view contrasts with the opinion of

Chiappe et al. (2004) and Grellet-Tinner et al. (2006, 2012)

who claim to have found vegetal matter inside the nests

(see Sander et al., 2008 for a different interpretation). In this

regard, there is an obvious incompatibility between the idea

that the superficial nodes of the megaloolithids were an

adaptation for avoiding obliteration of the pore openings

and the hypothesis that these eggs were not buried. It

must be noted that both morphological and microstructural

characteristic of the eggshell from Auca Mahuevo are

identical, and the numerous embryonic remains suggest

that these specimens were laid by the same titanosaur

species (Chiappe et al., 1998; García et al., 2010).

Interpretations regarding nest construction and incu-

bation strategy employed by titanosaurs have noted that

these reptiles probably burried their eggs in organic matter

Figure 1. Titanosaur eggs and eggshells from Salitral de Santa Rosa (Río Negro, Argentina). 1, Megaloolithid egg 434/P/96 (provisional cata-
logue number of the Museo Regional de Valcheta, Río Negro, Argentina); 2, SEM photograph of an megaloolithid eggshell surface (MML-Pv 30),
showing the external nodes and pores; 3, radial section of a megaloolithid eggshell (MML-Pv 21), under transmitted light, showing the fan-
shaped eggshell units and the arched accretionary lines; 4, radial section of a megaloolithid eggshell (UFRRJ-1), under polarized light, showing
the fan-shaped eggshell units; 5, detail of the mammilary structure of a megaloolithid eggshell (UFRRJ-1), showing the arched accretionary lines
crossed by radial wedge lines; 6, radial section of a relatively thick megaloolithid eggshell (MML-Pv 22) showing the fan-shaped eggshell units
and the arched accretionary lines; 7, radial section of an eggshell of multispherulitic morphotype (MML-Pv 38) under lupe, showing the irregu-
lar network of narrow eggshell units that surround numerous large pore canals; 8, radial section of an eggshell of multispherulitic morphotype
(MML-Pv 23), under transmitted light. Scale bars 1= 1 cm; 2–4, 6–8= 1 mm; 5= 2 mm.
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as crocodiles do (Grellet-Tinner et al., 2006). It has been in-

ferred that these animals built their nest with organic

matter, laying a large number of eggs with a conspicuous

external ornamentation (Fernández et al., 2013; Simoncini

et al., 2014). Given that it is well known that crocodile

eggshells experience changes during incubation (Ferguson,

1985; Simoncini et al., 2014), the low water-vapor conduc-

tance value of Auca Mahuevo eggs should be carefully con-

sidered. If the analyzed eggshell samples have been taken

from an egg that stopped its development during its first

days of incubation, we will probably obtain lower values

than if the samples were taken from an egg that stopped its

development at the final stage of incubation. Future studies

should resolve the variability in vapor conductance values

to assess the impact of the different stages of incubation.

Auca Mahuevo provides a unique opportunity to conduct

this type of study. Here we endorse a burial-strategy in-

cubation based on the interpretation made by Grellet-Tinner

et al. (2006).

The conductance index of the Argentinean eggs of the

multispherulitic morphotype is higher than that of the Ar-

gentinean megaloolithids. In fact, Salgado (2000) calculated

1428.33 as the GH2O value for an eggshell of this morpho-

type from Salitral Ojo de Agua (Río Negro Province). Thus, it

is probable that these clutches had also been covered by

sediment and/or vegetal matter.

Dinosaur nests attributed to titanosaurs from different

continents (Lapparent, 1958; Kerourio, 1981; Mohabey,

1984) share characteristics that indicate similar strategies

for different taxa, which in turn allow inferring a common

nesting strategy for this clade. Titanosaur nests consist of

shallow depressions, which were excavated in the ground

and rimmed by sediment removed from the excavation (Vilá

et al., 2010b). In Auca Mahuevo, this structure could be

documented only in those few cases in which the nests

were dug in sandy fluvial channels and later covered by

mud (Chiappe et al., 2004). Most of the nest structures

were apparently excavated in mud and covered by the same

kind of sediment, which makes virtually impossible their vi-

sualization. In Salitral Ojo de Agua and Salitral de Santa

Rosa, eggs of the multispherulitic morphotype also seem to

have been laid in shallow (probably excavated) depressions

(Salgado et al., 2007: fig. 5A). This kind of nest structure has

not been recorded yet anywhere else.

The clutches from Auca Mahuevo contain between 15

and 34 megaloolithid eggs (Chiappe et al., 1998, 2004)

(Fig. 3.1–2). In Salitral de Santa Rosa (Río Negro Province),

a clutch of 14 megaloolithid eggs was collected (Fig. 3.6),

which is consitent with those from Auca Mahuevo (Salgado

et al., 2007). In Catalonia, megaloolithid clutches seem to

have fewer number of eggs (a maximum of 6–7, according

to Sander et al., 2008). In this regard, European and Pata-

gonian titanosaurs were supposed to have developed quite

different reproductive strategies (Sander et al., 2008). How-

ever, Vilá et al. (2010b) recently reported clutches of up to

28 megaloolithid eggs at the Pynes locality (southern Pyre-

nees), which is much closer to the maximum number re-

ported in Auca Mahuevo. Furthermore, they interpret that

the lower number of megaloolithids per clutch reported in

many European and Asian sites is due to erosion (or preda-

tion; see Wilson et al., 2010) and that all megaloolithid

laying titanosaurs had the same reproductive behavior (Vilá

et al., 2010b).

With respect to the basic titanosaur clutch morphology,

Moratalla and Powell (1994) documented two different

styles of oviposition: eggs in clutches/nests (like those

recorded in Auca Mahuevo), and eggs in lined-up series. In

Auca Mahuevo, most egg clutches are in sub-circular to

sub-elliptical depressions, which vary in size from aproxi-

mately 100 to 140 cm across their maximum planview axes

Figure 2. Clutch, egg and eggshells of multispherulitic morphotype from Sanagasta, La Rioja Province, Argentina, attributed to neosauropods,
probably titanosaur. 1, clutch containing over twenty eggs from the main Sanagasta nesting site; 2, complete egg from the clutch #6, Sana-
gasta, sub-site A (CRILAR-Pv 400); 3, eggshells of multispherulitic morphotype of different thicknesses; 4, SEM photograph of an eggshell
fragment from the sub-site G (see Fiorelli et al., 2012); 5, radial sections of eggshells of multispherulitic morphotype from the clutch #10, sub-
site E, under transmitted light. For more information on the geology, paleontology and paleobiology of the Sanagasta nesting site see Grellet-
Tinner and Fiorelli (2010); Fiorelli et al. (2012, 2013) and Grellet-Tinner et al. (2012). Scale bars 1= 20 cm; 2= 5 cm; 3= 1 cm; 4–5= 2 mm.



(Chiappe et al., 2004). In Lérida (Spain), a nest with 6 to 8

eggs arranged circularly is conical in radial view (Lapparent,

1958; Kerourio, 1981).

The linear style of oviposition has been observed in

many localities of Europe, such as in Rennes-Le-Château,

France (Coombs, 1989). At this place, the eggs are se-

quenced in arches (each one with between 15 and 22 eggs)

whose radii vary between 1.3 and 1.7 m (Coombs, 1989).

The eggs in arches were thought to have been laid by a ro-

tating single female, pivoting on its forelimbs (Moratalla

and Powell, 1994). This particular clutch morphology was

not recorded among Patagonian megaloolithids, but in

Salitral Ojo de Agua some clutches of the multispherulitic

morphotype seem to be in straight rows (Moratalla and

Powell, 1994).

At Auca Mahuevo, the few undisputable nests are

elongate and kidney-shaped, with diameters ranging from

1 to 1.4 m and depths varying from 10 to 18 cm. The same

contour can be seen in the clutch from Santa Rosa. The eggs

from Santa Rosa and Auca Mahuevo are staked at different

levels, as recorded in many cases in the Pyrenee Mountains

(Sander et al., 2008; Vilá et al., 2010b). This strongly sup-

ports the same mode of nest excavation, dug up –according

to these authors– by one of their pes. This mode of exca-

vation differs from that proposed by Apesteguía (2004a),

who based on certain anatomical features of the axial and

appendicular skeleton claimed that titanosaurs would have

excavated their nests using their forelimbs (see Fowler and

Hall, 2011).

In Sanagasta, the clutches with more than 25 eggs con-

sist of two superposed rows wherein the greater amount of

eggs is in the upper row (Grellet-Tinner and Fiorelli, 2010).

However, most of the Sanagasta clutches with less than 15

eggs display varied arrangements. The clutches at Sana-

gasta display abiogenic accumulation patterns, some in

disorganized clusters or in associated mass accumulations

but in most cases showing several arrangements such as

linear organization or a typical Faveoloolithidae pattern

(Fig. 2.1) (Fiorelli et al., 2013). The egg-clutches are always

associated to paleohydrothermal structures, fabrics, and fa-

cies. Their distribution is directly related to the paleorelief,

and their precise location is closely constrained by thermal

paleotemperatures (30 to 40°C) for optimal incubation

(Fiorelli et al., 2012, 2013).

It is important to note that we have not considered

whether all the eggs of a single nest/clutch were laid by a

single female, as well as whether a single female laid more

than one clutch per season. In this regard, Sander et al.

(2010) proposed that the small clutch size and the size of

the eggs suggest that several clutches were produced by a

titanosaurid female per season. This point is crucial if we

aim at understanding the reproductive behavior of tita-

nosaurs. In this regard, it is important not to dissociate the

paleoenvironment of the nesting site based on appraisals

of their reproductive behavior. Reproduction in oviparous

vertebrates is usually more constrained by environmental

forces than in viviparous amniotes and careful nesting-site

selection becomes a critical factor (Shine and Harlow, 1996;

Kolbe and Janzen, 2002; Grellet-Tinner and Fiorelli, 2010).

Paleoenvironment

Virtually all sites with megaloolithid eggs reflect distal

alluvial or coastal plains (possibly even tidal plains) (Sander

et al., 2008), which differ from the other environment pre-

sumably preferred by most titanosaurs: according to Calvo

et al. (1997), Salgado et al. (2009), Garrido (2010), and Fiorelli

et al. (2012) there is a range of specific paleoenvironmental

conditions among the different titanosaur nesting sites

discovered to date, giving an idea of the versatility of these

dinosaurs in this respect.

At Auca Mahuevo, the paleoenvironment of the Anacleto

Formation (early Campanian) varies between the lower and
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Figure 3. 1, Field work at Auca Mahuevo (Neuquén Province, Argentina); workers excavating some titanosaurian clutches; 2, titanosaurian clutch,
with 30–32 megaloolithid eggs, from Auca Mahuevo; 3, view of egg-bearing level of the Anacleto Formation at Auca Mahuevo, which consists
mostly of siltstones deposited in floodplains (the marks point out the exact location of the clutch); 4, overview of the Allen Formation at Bajo de
Santa Rosa (Río Negro Province, Argentina). The egg levels are mostly pelites and sandstones, which correspond to brackish lagoons in a suprati-
dal environment, associated with aeolian sands (dunes) and deposits of ephemeral rivers; 5, an isolated egg of multispherulitic morphotype from
Bajo de Santa Rosa; 6, a clutch of 15 megaloolithids from the same locality.
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the upper sections of the outcrops (Garrido, 2010). The

lower section (which contains the four egg-bearing hori-

zons), consists of meandering fluvial deposits progressing

to distal floodplains at the locality Los Barreales (15 km

north Auca Mahuevo) (Fig. 3.3). In this section, the largest

concentrations of eggs are in areas close to the rivers (Ga-

rrido, 2010). In Neuquén city, the eggs of Megaloolithus

patagonicus lie in fluvial sandstones deposited in braid-

plains, with presence of paleosoils (Calvo et al., 1997). In

Salitral de Santa Rosa, the paleoenvironment in which the

Allen Formation (bearing both megaloolithids and eggs of

the multispherulitic morphotype) was deposited includes

brackish lagoons in a supratidal environment, associated

with aeolian sands (dunes) and deposits of ephemeral rivers

(Fig. 3.4). In Sanagasta (La Rioja Province, Argentina), the

paleoenviroment of Los Llanos Formation is characterized

by an epithermal setting, with hot-spring structures such

as alkaline fountain geysers, domal mounds, stratified

terraces of calcite, ponds, and travertine dam and mini-

dam-like structures; also common are acidic structures,

facies and minerals such as siliceous geodes, opalized

sediments, botryoidal facies, and other associated hot-

stream deposits (Fiorelli et al., 2012). Associated with the

clutches and regularly distributed in the site, there are mi-

crostromatolith, microbialites (biosilicifications) and fossil

cyanobacteria and ‘pinnate’ diatoms, which are symptomatic

of an extreme hydrothermal paleoenvironment (Grellet-

Tinner and Fiorelli, 2010; Fiorelli et al., 2012).

Colonial nesting behavior

Megaloolithid nests and clutches, as well as clutches of

multispherulitic eggs found in Argentina and Uruguay, are

rarely isolated. On the contrary, it is usual to find large con-

centrations of eggs, clutches or nests in the same areas and

stratigraphic levels (Carpenter, 1999; Salgado et al., 2007,

2009; Vilá et al., 2010a, 2010b; Fernández, 2013). Clutches

in the same horizon are usually assumed to be synchronous,

although the precise synchronicity is difficult to test in some

deposits (e.g., in Santa Rosa and India), which would be fun-

damental to infer colonial nesting behavior. In other cases

(Auca Mahuevo), the synchronicity is much more evident.

Synchronicity and regular distribution of the clutches in

Auca Mahuevo strongly suggest that these dinosaurs (at

least the females) would have aggregated during the

ovopositional season (Chiappe et al., 2005). The Auca

Mahuevo site is a large outcrop that yielded clutches in

four distinct horizons, so the distribution pattern of nests

in this area resembles those of nesting colonies of living

birds. For example, marine birds commonly return every

year to the same area for nidification. If such an area gets

repeatedly buried preserving the nests in the fossil record,

it would produce a distribution pattern similar to that of

the nests at Auca Mahuevo.

All megaloolithids recorded at Auca Mahuevo are nearly

identical in shape, microstructure and embryonic content,

which is assumed here to indicate the existence of a single

titanosaur species (as also inferred by Chiappe et al., 2005).

Up to now, only one parataxon of multispherulitic morpho-

type was reported in Sanagasta; there, Grellet-Tinner and

Fiorelli (2010) interpreted repetitive oviposition of a single

group of neosauropods with colonial behavior and site fi-

delity. In contrast, at Salitral de Santa Rosa megaloolithids

vary importantly in eggshell thickness and microstructure

(Salgado et al., 2009) (Fig. 1.3–6). This, coupled with the fact

that at such locality megaloolithid clutches are nearly con-

tiguous with eggs or clutches of multispherulitic morpho-

type, suggests more than one titanosaur species in the area

(Salgado et al., 2007). Nevertheless, as noted above, we

cannot claim that these clutches were laid at the same time.

Many authors (Moratalla and Powell, 1994; Grellet-

Tinner et al., 2006) have hypothesized that titanosaurs

were precocial, as are living crocodiles. This is inferred in

part because of the absence of neonate and adult remains

in the neighborhood of the clutches attributed to these di-

nosaurs (in Auca Mahuevo and in other localities). Addition-

ally, the short distance between clutches would have

prevented the permanent presence of adult individuals in

the nest surroundings (Chiappe et al., 2005).

García (2008) recently presented evidence supporting

the opposite view that titanosaurs –at least those from

Auca Mahuevo– were altricial. Assuming that titanosaurs

followed a sequence of ontogenetic stages similar to modern

birds, and taking into account the stages established by

Hamburger and Hamilton (1951), the embryos from Auca

Mahuevo would lie in stages 36–37, within the 42 prenatal

stages (usually cited as HH-stages) established for birds

(see also Starck, 1993). Thus, the degree of development of

the Patagonian embryos is similar to that recorded in al-
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tricial birds at the same stage, which suggests that ti-

tanosaurs followed a similar reproductive strategy. Finally,

the embryos from Auca Mahuevo present an ‘egg-tooth’-

like structure. This structure is more frequent in altricial

than in precocial birds, although it is present in many

crocodiles and snakes (García, 2007a, 2008, see below).

Titanosaurs would have reproduced periodically. At Auca

Mahuevo there are four egg-bearing horizons. Two of these

can be splitted into two sublevels apparently corresponding

to two consecutive egg-laying events. Thus, evidence

from Auca Mahuevo suggests at least six (not necessarily

consecutive) seasons of colonial aggregation for these ti-

tanosaur populations (Chiappe et al., 2005).

TITANOSAUR DEVELOPMENT

Embryological osteology

The titanosaur embryos discovered at Auca Mahuevo

are represented exclusively by cranial material. The skulls

are proportionally large and short (34.5–39 mm long, and

24–24.5 mm high), with a circular orbit that comprises

approximately one third of the total skull length (Chiappe et

al., 2001; Salgado et al., 2005; García et al., 2010) (Fig. 4.1).

In lateral view, the antorbital fenestra of the embryonic

skull is placed rostrally to the orbit and dorso-posteriorly to

the small subcircular preantorbital fenestra (García, 2007b)

(Fig. 4.1). The rostral tip of the premaxillae has a bony pro-

tuberance, which has been interpreted as analogous to the

‘egg-tooth’ of many living reptiles and birds (García, 2007a)

(Fig. 4.1–4). According to this interpretation, the limbs of

the titanosaur embryos, at least in this species, would have

played only a complementary role in hatching (Mueller-

Töwe et al., 2002) and not an exclusive one as claimed by

Carpenter (1999).

Ontogenetic variation

Assuming that the cranial morphology of the adult ti-

tanosaurs from Auca Mahuevo was overall similar –in terms

of their basic structural plan– to that in other titanosaurs

such as Nemegtosaurus (Nowinski, 1971; Wilson, 2005b) and

Tapuiasaurus Zaher et al., 2011, it is evident that the Pata-

gonian dinosaurs experienced a deep ontogenetic modifi-

cation in this part of the skeleton (Fig. 5) (García, 2008).

Although there are some differences between the titano-

saur skulls  mentioned above, they share a basic structural

plan that is remarkably different from that of the Auca

Mahuevo embryos. Some of these differences would imply

ontogenetic changes supposed to be paleobiologically sig-

nificant, as discussed below.

Relative lengthening of the snout (and correlated changes). The

rostral portion of the embryonic skull (as seen in MCF-PVPH

272, MCF-PVPH 263) (measured from the distal end of the

premaxilla up to the orbital border of the lacrimal) never sur-

passes 50% of the total skull length. On the other hand,

adult sauropods have a relatively elongated skull, where the

antorbital region varies between 56% and 68% of the total

skull length (e.g., Shunosaurus lii Dong et al., 1983 [Zheng,

1996; Chatterjee and Zheng, 2002], Camarasaurus lentus

Marsh, 1889 [Madsen et al., 1995], Diplodocus longus Marsh,

1878 [Hatcher, 1901; Berman and McIntosh, 1978], Bra-

chiosaurus brancai Janensch, 1914 [Janensch, 1935–36], Ne-

megtosaurus mongoliensis Nowinski, 1971 [Wilson, 2005b],

Rapetosaurus krausei Curry Rogers and Forster, 2004, and

Tapuiasaurus macedoi Zaher et al., 2011). The ontogenetic

elongation of the snout of the Auca Mahuevo titanosaur in-

volves mainly the premaxillae and maxillae, with a notable

expansion of their nasal processes and caudal portions,

respectively (Fig. 5; see also García, 2008). A similar mor-

phological change in ontogenetic trajectory is observed in

the snout of the basal sauropodomorphs Massospondylus

Owen, 1854 (Attridge et al., 1985; Reisz et al., 2005, 2010),

and Mussaurus Bonaparte and Vince, 1979 (Pol and Powell,

2007).

Morphological changes in the premaxilla. In dorsal view, the

angle determined by the interpremaxillary and the pre-

maxillo-maxillary sutures (the last measured by Upchurch

[1999] as the segment linking the rostral end of the suture

and the caudal margin of the subnarial foramen), differs

among the different sauropods (in Rapetosaurus and in the

neuquenian embryos, because of the absence of subnarial

foramen, that angle is established by the midline and the

segment that runs from the rostral end of the premaxillo-

maxillary suture to the caudal extreme of the nasal process

of the premaxilla). This angle is 10° in Diplodocus (Marsh,

1878), 40° in Camarasaurus Cope, 1877 (Madsen et al.,

1995: fig. 5C; Wilson and Sereno, 1998: fig. 7C), 30° in Bra-

chiosaurus Rigg, 1903 (Upchurch, 1999: fig. 7), 18° in Ne-

megtosaurus, 14° in Rapetosaurus (Curry Rogers and Forster,

2004: fig. 1), and approximately 35° in an indeterminate
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titanosaur (MPCA-Pv 74) from the Upper Cretaceous of

Río Negro (Coria and Chiappe, 2001). The embryos from

Neuquén show a condition that resembles that of Cama-

rasaurus, with an angle of approximately 40°. Their pre-

maxillae are wide, and would have occupied most of the

snout (the maxillae would have not been exposed in anterior

view), a condition unknown in adult titanosaurs. Therefore,

the rostral expression of the premaxillae would have been

reduced along ontogeny, and the angle between the

sagittal plane and the premaxillo-maxillary symphysis

(García et al., 2010) would have been either slightly or mar-

kedly reduced, according to the variability observed in adult

titanosaur skulls.

According to García (2007a), the ontogenetic disap-

pearance of the ‘egg-tooth’-like structure (as a conse-

quence of the morphological remodeling of the premaxillae),

would have affected the whole anterior portion of the skull.

As noted above, the ontogenetic narrowing of the pre-

maxillae would have been accompanied by the rostral ex-

pansion of the main body of the maxillae. Thus, the maxillae

would have had a greater participation of the frontal plane

of the snout, reaching the condition observed in adult ti-

tanosaurs, such as Nemegtosaurus (Nowinski, 1971; Up-

church, 1999; Wilson, 2005b) and Tapuiasaurus (Zaher et al.,

2011).

On the other hand, the premaxillae of the specimens

from Auca Mahuevo have extremely short nasal processes

(Fig. 4.1), contrary to those of adult titanosaurs (e.g., Nemeg-

tosaurus and Rapetosaurus) and diplodocoids (e.g., Diplodo-

cus and Apatosaurus Marsh, 1877a). This is coherent with

the position of the external nares inferred for the neuque-

nian fossils (not completely retracted, see below). Thus, it

is possible that the remodeling of the premaxillae during on-

togeny implicated the elongation of the nasal process as

well, which in turn would be related to the ontogenetic re-

traction of the external nares (Fig. 5).

Retraction of the external nares (and correlated changes).

Wilson (2002) interpreted his character 8, “external nares

retracted to level of the orbits”, as synapomorphic for Eusau-

ropoda. This author proposed three states for the character

“position of the external nares”: (0) terminal, present in

prosauropods and theropods; (1) retracted to the level of

the orbits, present in all eusauropods except diplodocids;

(2) retracted and located between the orbits, only in Diplo-

docus and Apatosaurus. Salgado and Calvo (1997) claimed,

based on a premaxilla from the Los Blanquitos Formation,

Salta Province (Powell, 1979), and on the premaxilla of

Malawisaurus dixeyi Haughton, 1928 (Jacobs et al., 1993),

that the external nares of the titanosaurs would not have

been completely retracted. A similar condition is inferred

from premaxilla and maxilla of neuquenian titanosaur, Na-

rambuenatitan palomoi Fillippi et al., 2011. In contrast, Curry

Rogers and Forster (2001, 2004) interpreted that the ex-

ternal nares of the titanosaur Rapetosaurus krausei were

retracted as in diplodocids.

In the Auca Mahuevo embryos the external nares would

have been located rostro-dorsally to the antorbital fenes-

tra and in a more rostral position (less retracted) than in Ca-

marasaurus and Malawisaurus (Jacobs et al., 1993). This is

inferred, as mentioned above, from the strong rostro-dorsal

inclination of the lacrimal, the rostral extension of the

frontal, the relative location of the nasal, and the brevity of

the nasal process of the premaxilla (Fig. 4.1, arrow). Re-

gardless of the condition in the adults (partially or com-

pletely retracted external nares), it is evident that the

external nares of the titanosaur from Auca Mahuevo mi-

grated caudodorsally during ontogeny (García, 2008; García

et al., 2010). Accordingly, the migration of the external nares
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Figure 4. Titanosaur embryonic specimens from Auca Mahuevo. 1, complete and articulated skull (MCF-PVPH 263), in left lateral view. The arrow
shows the inferred location of the external nares; 2, complete and disarticulated skull (MCF-PVPH 250); 3, complete and disarticulated skull
(MCF-PVPH 664); 4, both articulated premaxillae (MCF-PVPH 659) in ventral view; 5, right maxilla (MCF-PVPH 679), in medial view; 6, right jugal
and postorbital (MCF-PVPH 663), in lateral view. Abbreviations: 1–8, alveoli; aap, anterior ascending process of the maxilla; ab, appendicular bone;
amp, anteromedial process of the maxilla; an, angular; aof, antorbital fenestra; d, dentary; en, external nares; ets, ‘egg-tooth’ structure; f, frontal;
h, hole; ipmxs, interpremaxillary symphysis; itf, infratemporal fenestra; j, jugal; jp, jugal process of the maxilla; js, jugal shelf; j(art.qj.), jugal, ar-
ticulation for the quadratojugal; j(lp), jugal, lacrimal process; j(mxp), jugal, maxillary process; j(pop), jugal, postorbitary process; l, lacrimal; mx,
maxilla; n, nasal; np, narial process of the premaxilla; o, orbit; p, parietal; paof, preantorbital fenestra; pap, posterior ascending process of the
maxilla; pl, palatine; pls, palatine shelf; pmx, premaxilla; po, postorbital; pt, pterygoid; q, quadrate; qj, quadratojugal; sp, sclerotic plates; sq,
squamosal; stf, supratemporal fenestra; t, tooth; vn, ventral notch. Scale bars 1–3, 6= 1 cm; 4–5= 5 mm.



would have been correlated with the caudo-dorsal elon-

gation of the nasal process of the premaxilla, the caudo-

ventral inclination of the posterior ascending process of the

maxilla, the caudo-dorsal rotation of the lacrimal, and,

probably, the shortening of the pos-torbitary and supra-

temporal regions (frontal and parietal) (Fig. 5). The migra-

tion of the external nares has not been reported in other

sauropods. In the youngest diplodocid known, for instance,

the external nares occupy a position very similar to that

one in adult specimens (Whitlock et al., 2010). The paleo-

biological implication of this ontogenetic variation is still

unknown.

Changes in dentition. The dental formula of the Auca Ma-

huevo embryos is Pm4 M7–8/D10?. The number of teeth in

the premaxilla and maxilla is similar to that of some adult

titanosaurs, such as the Patagonian titanosaurid MAU-

Pv-AC-01 (Coria and Salgado, 1999), Narambuenatitan (Fi-

lippi et al., 2011), Nemegtosaurus (Nowinski, 1971; Wilson,

2005b), and Rapetosaurus krausei (Curry Rogers and Forster,

2001, 2004). The titanosaur Tapuiasaurus, instead, has more

teeth (reaching at least 12 in the maxilla; see Zaher et al.,

2011: fig. 1). Given the variability in the tooth count among

titanosaurs and the absence of complete ontogenetic se-

quences for all the above mentioned titanosaurs, it cannot

be determined if the number of teeth remained constant in

the adult forms of the Auca Mahuevo embryos. However,

the low tooth count in all titanosaurs with known skulls or

dentition (except for Tapuiasaurus) and the Auca Mahuevo

embryos may indicate the tooth count was relatively constant

along the ontogeny of titanosaurs. This contrasts with the

condition of other dinosaur taxa, such as the ornithischian

Hipacrosaurus Brown, 1913, and the theropod Allosaurus

Marsh, 1877b, in which the number of teeth increases

during ontogeny (Horner and Currie, 1994; Rauhut and

Fechner, 2005).

In mature titanosaur specimens (e.g., Nemegtosaurus,

Tapuiasaurus, etc.), unlike the condition in the neuquenian

embryos, the caudal portion of the maxilla (which is placed

ventrally to the antorbital fenestra) carries no teeth (García

and Cerda, 2010a). In Rapetosaurus, according to Curry

Rogers and Forster (2001), the antorbital fenestra is apo-

morphically expanded into the main body of the maxilla;

in this way, the portion of this bone below the antorbital

fenestra has teeth. Similarly, in juvenile specimens of

Diplodocus the tooth row extends farther more posteriorly

than in adults (Withlock et al., 2010).

The general morphology of the individual teeth is simi-

lar among adult titanosaurs with known skulls (e.g., Nemeg-

tosaurus, Tapuiasaurus, Rapetosaurus) and these narrow-

crowned teeth are also present in the Auca Mahuevo em-

bryos, suggesting that the type of teeth did not vary along

ontogeny. The exception is the absence, in prenatal stages,

of wear facets (Fig. 6.1) that would be generated once the

animal begins chewing movements and by the relatively

thicker enamel layer of the embryonic teeth (García and

Cerda, 2010a) (Fig. 6.2). The later embryonic stages, at least

in the titanosaurs from Auca Mahuevo (Chiappe et al., 1998,

2001), are characterized by the presence of teeth, both
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Figure 5. Ontogenetic variation in titanosaurian skull morphology. The embryonic skull at the left is based on the best preserved embryonic skulls
from Auca Mahuevo (MCF-PVPH 263 and 272), the adult skull morphology at right is mostly based in Nemegtosaurus mongoliensis. The three in-
termediate steps are hypothetical. Larger arrow indicates the probable ontogenetic trajectory of the external nares; the smaller arrows indicate
the probable ontigenetic shortening of the infraorbitary region of the skull. Abbreviations: aof, antorbital fenestra; en, external nares; f, frontal;
j, jugal; l, lacrimal; mx, maxilla; o, orbit; paof, preantorbital fenestra; pmx, premaxilla; qj, quadratojugal; vn, ventral notch. Not to scale.



functional (only in postnatal stages) and replacement teeth

(García, 2007a).

TITANOSAUR DENTITION

Titanosaurs, as other sauropods, have four functional

premaxillary teeth (Nowinski, 1971; Coria and Chiappe,

2001), seven to eight in the maxilla (Sciutto and Martínez,

1994; García and Cerda, 2010a), and 11–14 in the dentary

(Nowinski, 1971; García, 2008; García and Cerda, 2010a;

Machado et al., 2013). The teeth are basically cylindrical,

with their margins nearly parallel, without denticles and

tapering distally (Fig. 6.1–4). In cross section, titanosaur

teeth vary from circular to elliptical and some are gently

'D'-shaped (Wilson and Sereno, 1998) (Fig. 6.2). Most fre-

quently the labial side is slightly convex and the lingual one

is slightly concave, although in numerous specimens the
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Figure 6. Titanosaurian teeth. 1, embryonic tooth (MCF-PVPH 770), showing the absence of wear facets; 2, transverse section of an embryonic
tooth (MCF-PVPH 769) showing the thickness of the enamel and dentine layers; 3, wear facet surface of an adult titanosaurian tooth (MPCA-
Pv 18), showing fine scratches, which are parallel to the longitudinal axis of the wear facet; 4, adult titanosaurian tooth (MPCA-Pv 203) in mesial
view, showing typical double wear facet. Abbreviations: de, dentine; el, enamel; la, labial; li, lingual; pi, pits; sc, scratches; wf(la), labial wear
facet; wf(li), lingual wear facet. Scale bars 1–2= 0.1 mm; 3= 200 µm; 4= 1 mm.



latter is more or less straight (Kues et al., 1980; Kellner,

1996; Upchurch et al., 2004). These curvatures, together

with the different morphologies and positions of the wear

facets, enable the identification of isolated teeth from the

upper (premaxillary or maxillary) and lower dentition (den-

tary) (García and Cerda, 2010b).

Functional teeth of titanosaurs normally bear wear

facets (Fig. 6.4). García and Cerda (2010b) proposed a clas-

sification for titanosaur tooth-wear based on shape and dis-

tribution of those facets. It includes: (1) teeth with a single

wear facet, on either lingual or labial faces; (2) teeth with a

pair of wear facets, one on the labial and the other on the

lingual face (Fig. 6.4); and (3) teeth with multiple, complex

wear facets (García and Cerda, 2010b: fig. 5).

Adult titanosaurs presumably had, in addition to the

functional tooth, three replacement teeth per alveolus in

premaxillae and maxillae (Coria and Chiappe, 2001; Zaher et

al., 2011; D’Emic et al., 2013), and two in the dentary

(García and Cerda, 2010b; Gallina and Apesteguía, 2011;

Machado et al., 2013). As we know, sauropods replaced their

teeth throughout their lives (Huene, 1929; Nowinski, 1971;

Powell, 1979; Coria and Chiappe, 2001). In nearly all

sauropods, this replacement is produced in a linguo-labial

direction, from the most immature to the most functional,

with the replaced tooth being the most labially positioned

in the alveolus. In the dentary, the style of dental replace-

ment was first studied by Nowinski (1971) in Nemegtosaurus

mongoliensis, by García and Cerda (2010b) in a fragment of

a Titanosauria indet., by Gallina and Apesteguía (2011) in

Bonitasaura salgadoi Apesteguía, 2004b, and by Machado et

al. (2013) in the Brazilian titanosaur Brasilotitan nemophagus

Machado et al., 2013. In some of these cases, the pattern of

replacement is in ‘waves’, similar to that recorded in other

non-mammalian tetrapods (Edmund, 1960; Osborn, 1977).

Micro-wear marks are frequently found on the wear

facets (Fig. 6.3–4); these have been used by different au-

thors to infer diet preferences (Fiorillo, 1991, 1997, 1998,

2008; Calvo, 1994; Upchurch and Barrett, 2000; Schubert

and Ungar, 2005; Sereno et al., 2007; García and Cerda,

2010b; Whitlock, 2011; Díez Días et al., 2012; García,

2013). Some of these authors observed, in numerous teeth

of indeterminate titanosaurs, fine striations or scratches,

parallel and sub-parallel to the greater axis of the wear

facet, as well as pits, both in wear facets (dentine and

enamel) and on the rest of the tooth surface (on the

enamel) (Fig. 6.3). Although García and Cerda (2010b) agree

that wear facets would have originated by tooth-to-plant

matter or tooth-to-tooth contact because of constant

friction, they concluded that the micro-wear would be re-

lated to the amount and attributes of the (involuntarily

swallowed) rocky material (sediment grains, sand, etc.),

mixed with the food (García, 2013). The above summarized

dental features of titanosaurs provide important clues for

interpreting dietary and functional aspects of titanosaur

paleobiology (see Discussion).

TITANOSAUR HISTOLOGY

Bone histology provides information about the biology

of extinct vertebrates, and has been used extensively for di-

nosaurs (Chinsamy-Turan, 2005). Bone microstructure pro-

vides a direct record of ontogenetic growth and gives clues

on various aspects of dinosaur biology, including growth

rates, longevity, age at maturity, adult size, ontogenetic

stages, and timing of sexual maturity (Chinsamy-Turan,

2005).

There is a significant number of contributions that deal

with the long-bone histology of sauropods (Rimblot-Baly

et al., 1995; Curry, 1999; Sander, 2000; Sander et al., 2004,

2006, 2011; Klein and Sander, 2008; Klein et al., 2009, 2012;

Woodward and Lehman, 2009; Company, 2011; Stein et al.,

2010). However, studies on bone histology of titanosaur

sauropods have just begun during the past few years. Re-

garding the non-South American titanosaurs, published his-

tological descriptions include: Phuwiangosaurus sirindhornae

Martin et al., 1994 (Klein et al., 2009), Alamosaurus sanjua-

nensis Gilmore, 1922 (Woodward and Lehman, 2009), Li-

rainosaurus astibiae Sanz, Powell, Le Loeuff, Martínez and

Pereda-Suberbiola, 1999 (Company, 2011), Magyarosaurus

dacus Nopcsa, 1915 (Stein et al., 2010) and Ampelosaurus

atacis Le Loeuff, 1995 (Klein and Sander, 2008, Klein et al.,

2012). In general terms, the primary cortical bone of these

taxa is mainly composed of fibro-lamellar tissue and/or

parallel-fibered bone tissue. A particular primary bone

tissue, namely Modified Laminar Bone (MLB) has been re-

ported in some taxa, including Ampelosaurus, Magyarosaurus

Huene, 1932, Phuwiangosaurus Martin, Buffetaut and Su-

teethorn, 1994, and Lirainosaurus (Klein et al., 2012). In this

particular bone tissue the scaffolding of the fibrolamellar
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Figure 7. Bone histology of South American titanosaurs. 1, Dense Haversian tissue of the outer cortex of the mid diaphysis of a tibia of a non-
fully developed specimen of Neuquensaurus australis (MLP CS 1093). Note that the primary bone tissue has been almost entirely replaced by
secondary bone; 2, detail of the primary bone tissue in the mid shaft of a femur of a non-fully developed specimen of Neuquensaurus australis
(MCS-Pv 5/28, femur length: 85 cm). Arrowheads indicate the presence of LAGs; 3, external cortex of the mid diaphysis of a humerus of Neuquen-
saurus robustus (MCS-Pv 8, femur length: 81 cm). The bone tissue is composed by dense Haversian bone. A well-developed EFS is observable in
the subperiosteal cortex; 4, transverse section of a long bone of the embryo of an indeterminate titanosaur from Auca Mahuevo locality (MCF-PVPH
808). Upper right corner: detailed view of the embryonic bone tissue; 5, dermal ossicle of Saltasaurus loricatus. Note the vertical and horizon-
tal system of structural fiber bundles; 6, structural fiber bundles in the osteoderm of an indeterminate titanosaur. 1 and 6, polarized light; 2–4,
normal transmitted light; 5, polarized light with lambda compensator. Abbreviations: efs, external fundamental system; mc, marrow cavity; pbm,
primary bone matrix; po, primary osteons; sfb, structural fiber bundles; vs, vascular space. Scale bars 1, 3–4, 6= 0.5 mm; 2= 0.1 mm; 5= 1 mm.



bone –which usually is laid down as a matrix of woven

bone– is laid down as parallel-fibered or lamellar bone ma-

trix instead (Klein et al., 2012). Klein et al. (2012) suggested

that MLB is a general feature of small titanosaurs. Re-

garding growth marks, growth cycles in the form of modu-

lations were observed only in Alamosaurus (Woodward

and Lehman, 2009). Other kinds of growth marks (lines of

arrested growth or LAGs) have been reported in Liraino-

saurus, Magyarosaurus, and Phuwiangosaurus. The high de-

gree of secondary remodelling is noteworthy in several of

the published taxa (Klein et al., 2009, 2012; Stein et al., 2010;

Company, 2011).

Although the record of titanosaurs in South America is

specially abundant and diverse, studies focused on their

bone histology are very scarce. To date, the only published

contribution in this regard is based on the study of the holo-

type of Bonitasaura salgadoi (Gallina, 2012). Preliminary his-

tological descriptions of Mendozasaurus neguyelap González

Riga, 2003, Saltasaurus loricatus Bonaparte and Powell,

1980, and Neuquensaurus Powell, 1992, have been carried

out recently (González Riga and Curry Rogers, 2006; Cerda

and Powell, 2009; Cerda and Salgado, 2011). From these

contributions, some generalized features can be mentioned.

As reported for other titanosaurs (e.g., Lirainosaurus), dense

Haversian tissue predominates in most of the examined

samples and the amount of primary tissue is much reduced

and limited to the outer cortex (Fig. 7.1). Typologically, the

primary tissue is mostly fibro-lamellar, with variable

amounts of parallel-fibered bone. The primary bone matrix

is commonly interrupted by growth marks (LAGs and/or

annuli) (Fig. 7.2). The outer layer of avascular or poorly vas-

cularized bone tissue that indicates that maximum body size

and skeletal maturity of an individual are attained (External

Fundamental System or EFS) could be established only in

Saltasaurus and Neuquensaurus (Fig. 7.3; see also Cerda and

Powell, 2009; Cerda and Salgado, 2011).

The exceptional bone remodelling observed in South

American titanosaurs is in accordance with previous descrip-

tions of small-bodied titanosaurs (Klein et al., 2009, 2012;

Stein et al., 2010; Company, 2011). Although the causes of

extreme remodelling of the primary bone have not been ex-

plored yet in depth, it is hardly a size-related characteristic,

because the secondary remodelling in non-titanosaurian

taxa (e.g., Dicraeosaurus Janensch, 1914) of a comparable

size is less than that recorded in small titanosaurs such as

Ampelosaurus (Klein et al., 2012: fig. 1). Other possible ex-

planation could be related with the particular posture and

locomotion of titanosaurs (D’Emic and Wilson, 2012). The

causes alleged for secondary remodelling in vertebrates

(many of which are based on experimental evidence) are di-

verse (Enlow, 1962; Currey, 2003), and the causal origin of

the Haversian tissue is still debated among neontologists;

obviously, this precludes our comprehension of the unusual

secondary remodelling observed in several titanosaurs.

The abundance of Haversian tissue in the cortex of the

appendicular bones of several titanosaur taxa enormously

hampers the observation of possible growth marks; how-

ever, these are clearly present. The repeated presence of

discontinuities such as LAGs and annuli in the mid- and

outer cortex of diverse appendicular bones suggests that

many titanosaur species had, at least in a certain stage of

their ontogeny, a discontinuous growth.

Concerning the microstructure of prenatal ontogenetic

stages, García (2008) and García and Cerda (2010a) ana-

lyzed thin sections of the embryonic specimens from Auca

Mahuevo. Their bone tissue is composed exclusively of

woven fibered bone, with numerous and wide vascular

spaces that rendering it a finely spongy appearance (Fig.

7.4). The bone microstructure of the Patagonian titanosaur

embryos reveals an early stage of development, earlier

than that of other dinosaurian embryonic specimens whose

paleohistology is known (Horner et al., 2001; Ricqlès et al.,

2001; Weishampel et al., 2008; Reisz et al., 2013).

It is clear that study of the osteohistology of South

American titanosaurs is just beginning. The relative abun-

dance of titanosaurian materials from South America pro-

vides a unique opportunity to assess several aspects of

titanosaurian paleobiology (e.g., growth rates and evolution

of body size) and a more complete understanding of these

aspects awaits a comprehensive taxon sampling of the

South American forms.

On the other hand, microstucture of the titanosaur os-

teoderms is poorly known. In his study of the bony plates

from the Upper Cretaceous of northern Patagonia, Sal-

gado (2000, 2003) described the histology of an element

belonging to an indeterminate titanosaur from the Allen

Formation. This bone is characterized by being compact,

with an outer fibrous primary tissue and an important
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amount of inner Haversian tissue (Salgado, 2003). Also, the

bone histology of the osteoderms (bony plates and dermal

ossicles) of Saltasaurus loricatus has been recently described

(Cerda and Powell, 2010). Bony plates are composed of

secondary spongy bone, with only a thin cortex of primary

tissue. Conversely, the small dermal ossicles are compact

structures composed entirely by primary bone (Fig. 7.5). The

primary bone matrix of both bony plates and ossicles con-

sists of coarse bundles of mineralized collagenous fibers

(structural fibers sensu Scheyer and Sander [2004]). In a re-

cent contribution, Curry Rogers et al. (2011) described the

gross morphology and internal anatomy of two osteoderms

assigned to Rapetosaurus krausei from the Upper Cretaceous

of Madagascar. Although that contribution was not focused

on osteoderm histology, the authors mention the presence

of fibro-lamellar bone tissue in one of the elements. Also,

they indicate the presence of an important internal cavity

(more than half its total volume) in the larger osteoderm.

Curry Rogers et al. (2011) interpreted this last feature as

evidence for a mineral-storage function in titanosaur os-

teoderms. Histological observations made on bony plates

assignable to Titanosauria from the Anacleto and Allen for-

mations (Cerda et al., in press) also reveal the presence of

primary tissue formed by structural fibers (Fig. 7.6). These

bundles are similar to the structural fibers described in os-

teoderms of ankylosaurs (Scheyer and Sander, 2004) and

Saltasaurus and they support the metaplastic origin for

these structures.

TITANOSAUR PNEUMATICITY

The causal relationship between some osteological fea-

tures and an avian-like air sac system has been recognized

in sauropod dinosaurs since the mid-nineteenth century.

The origin, development, variation and biological implica-

tions of postcranial skeletal pneumaticity (PSP) in sauro-

pod dinosaurs (including titanosaurs) has been discussed

in depth by several authors (Janensch, 1947; Britt, 1993;

Wedel et al., 2000; Wedel, 2003, 2007, 2009; Schwarz et al.,

2007a). Titanosaurian PSP has been studied in relatively

few taxa, including Alamosaurus sanjuanensis (Woodward

and Leehman, 2009), Malawisaurus dixeyi (Wedel, 2009;

Wedel and Taylor, 2013) and saltasaurine titanosaurs

(Saltasaurus, Neuquensaurus and Rocasaurus Salgado and

Azpilicueta, 2000; Cerda et al., 2012). In the latter study,

anatomical description of several specimens reveals that

saltasaurine titanosaurs show evidence of PSP in both

the axial and appendicular skeleton. Cortical foramina

connected with internal cavities (namely, the most reliable

evidence for PSP in fossil groups) are present along the

vertebral column, including posterior caudal vertebrae

(Fig. 8.1–8). In the appendicular skeleton, evidence of PSP

is observed in the pelvic (ilium) and scapular (scapula and

coracoid) girdles (Fig. 8.9–15).

The particular pneumatic features of the saltasaurine ti-

tanosaurs reported by Cerda et al. (2012) provided new in-

formation about the soft tissue anatomy and the structure

of the respiratory system of this lineage, and also clues

about the evolution of PSP in archosaurs. First, Saltasaurini

show the most extreme case of PSP not only in titanosaur

sauropods, but also in sauropodomorph dinosaurs, with

evidence of invasion of pneumatic diverticula in the pectoral

girdle and the distal portion of the tail. Second, given the

strict correlations that exist between specific air sacs and

the axial elements that they pneumatize in living birds

(O’Connor and Claessens, 2005; O’Connor, 2006), the PSP

pattern reported for Saltasaurini has been interpreted as

evidence for the presence of cervical, abdominal and inter-

clavicular airs sacs in these titanosaurs (Cerda et al., 2012).

Although previous studies of PSP proposed that cervical

and abdominal air sacs were actually present in sauropo-

domph dinosaurs (Wedel et al., 2000; Wedel, 2007, 2009;

Perry et al., 2011), anatomical evidence for clavicular air sacs

has been reported only in saltasaurine titanosaurs. Third,

besides pterosaurs and theropod dinosaurs, extensive

pneumaticity was also reached independently in Sauropo-

domorpha. The extreme PSP in saltasaurine titanosaurs

supports the evidence of widespread, repeated evolution

of appendicular and posterior axial skeletal pneumaticity

in ornithodiran archosaurs, which in turn indicates that a

heterogeneously partitioned pulmonary system is primitive

for this group (Wedel, 2009; Perry et al., 2011; Benson et al.,

2012; Butler et al., 2012; Cerda et al., 2012; Yates et al.,

2012).

TITANOSAUR POSTURE AND LOCOMOTION 

The analysis of the locomotion in extinct vertebrates

without living representatives is one of the major challenges

of paleobiological inquiries (Alexander, 1989). Indeed, direct
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Figure 8. Pneumatic features in the caudal vertebrae and appendicular skeleton of Saltasaurini titanosaurs. 1, X-ray image of a middle caudal ver-
tebra of Rocasaurus muniozi (MPCA-Pv 47). Dashed line indicates the section showed in 2; 2, CT scan of the same specimen showing the internal
camellate bone; 3, middle caudal vertebra of Neuquensaurus australis in posterior view (MCS-Pv 5/9); 4, detail of a pneumatic foramen in the neu-
ral arch of the same specimen (box inset in 3); 5, two articulated middle caudal vertebrae of Neuquensaurus australis (MLP Ly 82) in lateral view
(inverted). Dashed line indicates the section showed in 6; 6, broken surface showing the internal pneumatic cavities. Given the poor contrast be-
tween bone tissue and sedimentary matrix, the last has been digitally erased; 7, distal caudal vertebra of Rocasaurus muniozi (MPCA-Pv 56) in
lateral view. Dashed line indicates the section showed in 8; 8, broken surface showing a prominent pneumatic cavity that occupies almost the
entire cross section area of the centrum. Note the presence of a pneumatic foramen in the ventral surface; 9, fragment of scapulocoracoid of
Neuquensaurus australis (MLP-CS 1298) in medial view; 10, detail of the pneumatic foramen in the medial surface (box inset in 9); 11, left coracoid
of Saltasaurus loricatus (PVL 4017-101) in medial view; 12, close up of the pneumatic foramina in the same specimen (box inset in 11). Note the
presence of internal camellae communicated with the larger foramen; 13, incomplete right ilium Neuquensaurus australis (MLP-CS 1057) in dor-
sal view; 14, broken surface of the same specimen (large box inset in 13) showing the internal camellate tissue; 15, detailed view of the same
specimen (small box inset in 13) showing a well developed pneumatic foramen on the medial surface. Abbreviations: cf, coracoid foramen; gs,
glenoid surface; nc, neural canal; pc, pneumatic cavities; pf, pneumatic foramen/foramina; posl, postspinal lamina; ppe, pubic peduncle; ppr,
preacetabular process. Scale bars 1, 3, 5, 9, 11, 13= 50 mm; 2, 7= 20 mm; 4, 6, 8, 10, 12, 14, 15= 10 mm.



observation is impossible, and much of the functional and

biomechanical interpretation is inferred from analogies with

extant groups (Lauder, 1995). Osteology and ichnology are

the only available evidences for approaching their limb

kinematics (Alexander, 1989; Johnson and Ostrom, 1995;

Wilson and Carrano, 1999).

Sauropod dinosaurs include the largest terrestrial ani-

mals ever known (Bonaparte and Coria, 1993; Novas et al.,

2005), with body-size being a hallmark of their body-plan

(Bakker, 1971; Salgado, 2000; Carrano, 2005; Sander et al.,

2010). In fact, several morphological features of Sauropoda

seem to be size-related, such as their quadrupedal and

columnar graviportal posture (McIntosh, 1990; Upchurch,

1995; Salgado et al., 1997; Wilson and Sereno, 1998; Ca-

rrano, 2005; Wilson, 2005a).

The appendicular skeleton of titanosaurs moves away

from the typical sauropod locomotory plan (Salgado et al.,

1997; Wilson and Carrano, 1999; Carrano, 2005). Wilson

and Carrano (1999, p. 162) proposed several attributes in

the appendicular skeleton of titanosaurs, particularly in

Saltasaurini, as “adaptations to mobility”, since they would

have increased their ability for particular movements com-

pared to other sauropods. Some of the features that would

increase mobility are: (1) the lateral development of the

preacetabular lobes of the ilium, which aligned the lines of

action of protractor muscles in an anteroposterior direction;

(2) the presence of broad articular surfaces in the distal

femur, which increased the range of movement of the

femorotibial articulation; (3) expanded humeral distal

condyles, and well-developed olecranon, which reduced the

columnar posture (Wilson and Carrano, 1999; see also

Bonnan, 2003).

The extreme development of these characteristics

are present in Saltasaurini (sensu Salgado and Bonaparte,

2007), a distinctive clade of derived titanosaurs which also

display the smallest sizes within the clade (Jianu and

Weishampel, 1999; Powell, 2003), possibly due to hete-

rochronic processes (Salgado, 1999).

Because of their overall morphological similarity and

their graviportal-columnar locomotory plan, sauropods have

traditionally been compared with elephants. However, the

above-mentioned titanosaur features suggest that their

limbs were not as columnar as in non-titanosaur sauropods

or proboscideans (Wilson, 2005a) (Fig. 9.1–3). Nonetheless,

the discussion on the limb posture in titanosaurs should

not be reduced to fully erect (i.e., elephantine posture) vs.

sprawling posture (i.e., typical reptilian posture). The debate

should turn on the question of whether the limbs always

acted in a fully parasagittal way (as is supposed to be in

non-titanosaur sauropods) or whether they employed an-

other repertoire of postures, such as the potentially upright

posture or tripodal stance for feeding, copulation, and de-

fense (Huene, 1929; Borsuk-Bialynicka, 1977; Bakker,

1978; Alexander, 1985; Wilson and Carrano, 1999; Powell,

2003).

Trackway evidence and girdle architecture

Trackways have provided good evidence for recon-

structing limb posture in extinct animals (Wilson and Ca-

rrano, 1999; Paul and Christiansen, 2000). Sauropod

trackways vary between a continuum of two major cate-

gories: ‘narrow-gauged’ (produced by non-titanosaurian

sauropods), where manus and pes impressions are close to

or even on the trackway midline, and ‘wide-gauged’ (pro-

duced by titanosaurian sauropods), in which the impres-

sions are well separated from the trackway midline (Farlow,
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Figure 9. Reconstructed pelvic girdles and hindlimbs of 1, Loxodonta
africana (with light grey Greek column model); 2, Camarasaurus; 3, the
titanosaur Opisthocoelicaudia (with light grey roman arch model), in an-
terior view, at the level of the first sacral vertebra (2 and 3 from Wilson
and Carrano, 1999); 4, sauropod, ‘narrow-gauge’ trackway; 5, sauro-
pod ‘wide-gauge’ trackway (from Romano et al., 2007). Not to scale.



1992; Wilson and Carrano, 1999; Romano et al., 2007). De-

spite the continuous variation of the sauropod trackway

gauge, recent works have defined three categories of track

gauge, based on the trackway ratio, which can be applied to

all dinosaurian tracks: ‘wide-, medium-, and narrow-gauge’

(Romano et al., 2007). To explain the trackway pattern of

these graviportal animals in functional terms we must

analyze the architecture of girdles and limbs in a stance

position.

Regarding the scapular girdle, Wilson and Carrano

(1999) stated, among others features, the presence of a

prominent olecranon and elongated sternal plates as fea-

tures suggesting a more flexed resting pose than in non-ti-

tanosaur sauropods, generating a ‘wide-gauged’ trackway

pattern. But how could these features contribute to such

flexed resting pose? The architecture of the scapular girdle

and the analysis of muscle lines of action and moment arms

shed light on this topic. The methodology of estimating

muscle moment arms is specified in the Supplementary

Online Information.
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Figure 10. Lines of action and moment arms for the muscles pectoralis (MP), brachialis (MB), and humeroradialis (MH) in 1, Saltasaurus; 2, Neuquen-
saurus; 3, Opisthocoelicaudia; 4, Diplodocus; 5, Apatosaurus; 6, Camarasaurus. 3, based on Borsuk-Bialynicka (1977); 4–6, based on Wilhite (2003).
Not to scale.



The sternal plates of titanosaur sauropods are cres-

centic and well-developed, with an elongation that is more

than 70% of humerus length (Salgado et al., 1997; Wilson,

2002; D’Emic, 2012). Unlike non-titanosaur sauropods (e.g.,

Diplodocus, Apatosaurus, Camarasaurus; Wilhite, 2003) ti-

tanosaurian sternal plates would not have been oriented

subvertically because such orientation would determine

an extremely deep thoracic cage and, additionally, would

prevent force transmission from the limbs to the trunk

(Schwarz et al., 2007b; Hohn, 2011). The more plausible

anatomical and biomechanical configuration for titano-

saurs is with the sternal plates oriented in an oblique way,

assuming the sternal plates were in contact with the me-

dial margin of the coracoids (Schwarz et al., 2007b; Hohn,

2011; Otero, 2011). If we assume this configuration, the

pectoralis muscle, which occupies most of the ventral/cra-
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Figure 11. Lines of action and moment arms for the muscles triceps pars scapulocoracoidea (MTSC), triceps pars scapularis (MTS), and triceps
pars humeralis (MTH) in 1, Saltasaurus; 2, Neuquensaurus; 3, Opisthocoelicaudia; 4, Diplodocus; 5, Apatosaurus; 6, Camarasaurus. 3, based on Borsuk-
Bialynicka (1977); 4–6, based on Wilhite (2003). Not to scale.



nial surface of the sternal plates, increases the mediolateral

component (adduction/abduction) of its line of action, which

is reflected in larger moment arms for this component in

the titanosaurs analyzed here (Fig. 10; Supplementary

Online Information Tab. 1). Conversely, in non-titanosaur

sauropods, the craniocaudal component (protraction/re-

traction) of m. pectoralis shows larger moment arms.

The presence of an enlarged olecranon is a feature pres-

ent in Titanosauria and extremely developed in Saltasaurini.

The m. triceps is the more important extensor muscle in

tetrapods, the origin of which is located (depending on the

group) in the scapula, coracoids, and humerus, and its in-

sertion is on the olecranon process. The direct relationship

between the development of the olecranon and the m. tri-

ceps is well known in mammals. A great development of this

process involves an increase in the mechanical advantage

of m. triceps for forearm extension (Vizcaíno and Milne,

2002).

Among the analyzed sauropods, the moment arms for

the three portions of m. triceps display larger moment arms

in saltasaurines than in Apatosaurus, Diplodocus and Cama-

rasaurus, in a relationship of 2:1 (Fig. 11; Supplementary

Online Information Tabs. 2–3). The main antagonists of m.

triceps are the flexor mm. biceps and humeroradialis. From

the latter two, m. biceps display the larger moment arms

for titanosaurs, being Neuquensaurus the taxon in which it

has the larger moment arm. Conversely, m. humeroradialis

shows similar values in all analyzed sauropods, except for

Neuquensaurs which, again, displays the highest values. In

sum, for the flexion-extension pair, titanosaur sauropods

considered here have a higher mechanical advantage than

non-titanosaur sauropods (Fig. 10; Supplementary Online

Information Tabs. 4–5).

Summarizing, the titanosaurs analyzed here have a high

mechanical advantage in the adductor-abductor and the

extension-flexion pairs, and such mechanical advantage is

not present in the ‘narrow-gauged’ sauropods studied here.

Hence, this muscle pattern seems to be characteristic of

‘wide-gauged’ sauropods and could have counteracted the

wider pose of the limbs.

Regarding the pelvic girdle and hindlimbs, if we take

a look at the way in which the femur articulates to the

acetabulum, it can be seen that in elephants the acetabulum

faces ventrally, determining a ventral articulation of the

femora with the pelvis. Thus, the weight of the elephant

body is transmitted mostly vertically to the limbs, producing

a compressional load regime as present in Greek columns

(Fig. 9.1). In ‘narrow-gauged’ sauropods (e.g., Camarasaurus)

the acetabulum does not face downwards, but laterally;

hence, the femur articulates laterally with the pelvis, not

ventrally as in elephants (Fig. 9.2, 9.4). Therefore, in

sauropods the limbs do not act as strict columns, and show

some lateromedial bending as well (Wilson and Carrano,

1999: fig. 2). This is why the traditional ‘elephantine-like’

posture does not fit entirely with the sauropod hindlimb

pattern.

On the other hand, the titanosaur ‘wide-gauged’ stance

exemplified by the ichnotaxa Sauropodichnus Calvo, 1991,

and Titanopodus González Riga and Calvo, 2009, is deter-

mined by the proximal one-third of the femoral shaft canted

inward relative to the rest of the shaft, and by the distal

femoral condyles bevelled dorso-medialy (Wilson and Ca-

rrano, 1999) (Fig. 9.3). According to this pattern, we here

propose an ‘arch-like’ hindlimb architecture for titanosaur

hindlimbs. As in roman arches (e.g., bridges, windows) the

loads would be distributed in a compressive way, but also

would transmit horizontal loads outwards, laterally sepa-

rating the limbs from each other (Fig. 9.4). This pattern is

evident in the animal when both hindlimbs are supporting

the weight (i.e., animal in standing position).

Despite the way in which the femur articulates to the

acetabulum, limb elements of elephants and non-titanosaur

sauropods are closely aligned relative to the ground reac-

tion force, reducing bending moments, and thus, the risk of

bone fractures (Biewener, 1989; Hutchinson and Gatesy,

2006; Preuschoft et al., 2011). But, what about titanosaurs?

Are titanosaur hindlimbs prepared to support such bending

moments produced by their posture? To answer these

questions we have to look at the femoral geometry. Ti-

tanosaur femora exhibit an extremely eccentric shaft cross-

section and were subject to higher lateromedial bending

than in non-titanosaurs (Wilson and Carrano, 1999). As with

an I-beam, an eccentric femoral cross section counteracts

the lateromedial forces created by the weight of the animal

due to the ‘arch-like’ geometry of the pelvis and hindlimbs,

suggesting that titanosaur femora did not act like columns

as in non-titanosaur sauropods or elephants.

The broad pelvic girdle of titanosaurs is the result of the
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nearly horizontal and laterally projected preacetabular lobes

of the ilia. The anterior portion of the m. iliotibialis is involved

in that skeletal configuration, shifting far and laterally its

origin from the hip joint. This shifting of the cranial portion

of m. iliotibialis would have produced moment arms larger

in Rocasaurus and Saltasaurus than in ‘narrow-gauged’

sauropods, in which the preacetabular blades of the ilium

are not oriented outwardly (Supplementary Online Informa-

tion Tab. 6). Additionally, this would also have increased the

antero-posterior component of the muscle’s line of action,

thereby improving the extension action (Wilson and Carrano,

1999; Otero, 2011).

The adductor musculature also displays changes in ti-

tanosaur sauropods. In a femur laterally angled outward

from the acetabulum, produced by ‘bevelled’ distal condyles,

the lines of action of the adductor musculature act in a
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Figure 12. Lines of action and moment arms for the muscles iliotibialis cranialis (MIT), adductor femoris 1 (MADD1), and adductor femoris 2
(MADD2) in 1, Saltasaurus; 2, Rocasaurus; 3, Opisthocoelicaudia; 4, Diplodocus; 5, Apatosaurus; 6, Camarasaurus. 3, based on Borsuk-Bialynicka
(1977); 4–6, based on Wilhite (2003). Not to scale.
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Figure 13. Titanosaurid braincase, brain and inner ear morphology. 1, Bonatitan (MACN-RN 821), skull roof in dorsal view; 2, Muyelensaurus Calvo,
González Riga, and Porfiri, 2007 (MAV-PV-AG 446/1), braincase in posterior view; 3, 5, braincase of titanosaur indet. MML-Pv 194; 3, braincase
in left lateral view; 5, braincase in anteroventral view (detail of internal carotid artery passage); 4, 6–7, digital reconstruction of braincase and
cranial endocast of Bonatitan; 4, braincase in dorsal view, the bone is rendered semitransparent to see the endocranial cavity; 6–7, cranial en-
docasts in dorsal and left lateral views respectively; 8–13, comparison of titanosaurid and diplodocoid inner ear morphology; 8, 11, right inner
ear of Bonatitan in 8, dorsal and 11, lateral, views; 9, 12, right inner ear of Antarctosaurus (MACN-RN 6904) in 9, dorsal and 12, lateral, views; 10,
13, right inner ear of the diplodocoid Amargasaurus Salgado and Bonaparte, 1991 in 10, dorsal and 13, lateral, views. Abbreviations: asc, ante-
rior semicircular canal; bas, basilar artery; bo, basioccipital; bph, basisphenoid; bt, basal tuber; btp, basipterygoid process; ca, crista antotica; cer,
cerebral hemisphere; de, dorsal expansion; endo, endocranial cavity; eo-op, exoccipital-opisthotic complex; f, frontal; fm, foramen magnum; fo,
fenestra ovalis; ic, internal carotid artery passage; ie, inner ear; lag, lagena; lsc, lateral semicircular canal; mcv, medial cerebral vein; mf, metotic
foramen; ob, olfactory bulb; oc, occipital condyle; ot, olfactory tract; p, parietal; pbt, basipterygoid process; pit, pituitary fossa; pit.en, pituitary
cast; pop, paroccipital process; psc, posterior semicircular canal; so, supraoccipital; stf, suptratemporal fossa; vasc, vascular element; I–XII, cra-
nial nerves. 12, 10, 13, modified from Paulina Carabajal et al. 2014. Scale bars= 1 cm.



different way than in ‘narrow-gauged’ sauropods, in which

the femora are straight-shafted. In ‘wide-gauged’ track-

makers, the legs are not just beneath the body, but extend

laterally outward from the hip joint; then, the line of action

of the mm. adductores femores have a principal medio-

lateral component, improving the adduction action, in con-

trast to that of ‘narrow-gauged’ sauropods. Besides, the

osteological correlates for the origin site of the mm. adduc-

tors femores (lateral surface of ischium; Meers, 2003) varies

significantly among the analyzed sauropods, placing the ori-

gin site in a more distal position in the ischium of Saltasaurus

and Rocasaurus, increasing the moment arm for the hip joint,

particularly in the m. adductor femoris 2 (Fig. 12, Supple-

mentary Online Information Tabs. 7–8). This larger moment

arms in saltasaurine sauropods could have counteracted the

wide hindlimb stance, in the same way that the m. pectoralis

did in the scapular girdle and forelimbs stand position.

In summary, at least derived titanosaurs probably dis-

played a limb posture that moves away from the typical

sauropod columnar pattern. The shoulder and pelvic girdle

architecture of titanosaurs suggests a broader posture than

that of non-titanosaur sauropods. Such postural change is

reflected in the shifting of specific muscular attachments

that counteract the wide posture of the limbs (as originally

noted by Wilson and Carrano, 1999), a hypothesis quanti-

tatively corroborated in this contribution.

NEUROANATOMY AND SENSORIAL PHYSIOLOGY

Interpretations about the sensorial capabilities of extinct

animals were historically based on casts of the internal

cranial spaces occupied by not preserved soft tissues (see

Jerison, 1969; Hopson, 1979), such as the brain and inner

ear. As the braincase, sauropod cranial endocasts are in

general short and transversely wide, unlike the elongated

and laterally compressed endocasts that characterizes

prosauropods and theropods (e.g., Hopson, 1979, 1980;

Sereno et al., 2007; Witmer et al., 2008; Knoll and Schwarz-

Wings, 2009; Balanoff et al., 2010; Paulina Carabajal, 2012;

Knoll et al., 2013) (Fig. 13).

Many titanosaur braincases –isolated or associated

with other bones of the same skeleton– have been found in

Argentinean Patagonia over the last years. These were

described in some detail in Bonatitan Martinelli and Fora-

siepi, 2004, Narambuenatitan (Filippi et al., 2011), and

several unnamed specimens (Calvo and González Riga,

2004; Calvo and Kellner, 2006; Paulina Carabajal and Sal-

gado, 2007; García et al., 2008; Paulina Carabajal et al., 2008)

(Fig. 13). Some of these studies include the cavities once

filled by soft tissues, such as the endocranium (occupied

in life by the brain and other associated organs and soft

tissues) and the inner ear (Paulina Carabajal and Salgado,

2007; Paulina Carabajal et al., 2008; Paulina Carabajal,

2009b, 2012).

In the sauropod braincase, there are three characteris-

tics that distinguish the endocranium from that of other

saurischians: absence or extreme reduction of the floccular

recess, high dorsum sellae formed by basisphenoid and

laterosphenoid, and enlarged pituitary fossa. (1) The floccu-

lar recess, located on the anterior aspect of the vestibular

eminence, hosts the floccular process of the cerebellum

and is generally not present in sauropods. Recently, small

floccular recesses have been reported in the endocranial

casts of Nigersaurus Sereno et al., 1999 (Sereno et al.,

2007), Giraffatitan Paul, 1988 (“Brachiosaurus” in Knoll and

Schwarz-Wings, 2009) and a new rebbachisaurid from nor-

thern Patagonia (Paulina Carabajal et al., 2013). Galton and

Knoll (2006) also reported a floccular recess in the endocra-

nial cavity of a possible sauropod, although this material is

very fragmentary and, thus, informatively ambiguous. In

the unnamed titanosaurid MCF-PVPH 765 (Paulina Caraba-

jal et al., 2008), there is a circular area crossed by numerous

small foramina on the anterior wall of the vestibular emi-

nence, evidencing the close relationship between this part

of the cerebellum and the labyrinth of the inner ear, more

specifically the anterior semicircular canal. In contrast, in

theropods the floccular recess is always present. It is also

present (although relatively less developed in terms of size)

in prosauropods such as Adeopapposaurus sp. Martínez,

2009, Plateosaurus sp. Meyer, 1837 (Galton, 1984, 1985)

and Massospondylus sp. (Gow, 1990). The flocculus is a re-

gion of the cerebellum related to the coordination of head,

eye and neck movements. In flying reptiles (e.g., Witmer et

al., 2003) and in living birds (e.g., Witmer and Ridgely, 2009),

the extremely enlarged floccular recess is associated with

the vestibular system and the vestibulo-ocular reflex. In

saurischians, the presence and relative development of the

floccular recess seems to be related to the degree of

bipedalism, since its absence is probably due to a reduced
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need for balance and orientation control in sauropods rela-

tive to the condition in theropods (Chatterjee and Zheng,

2002; Witmer et al., 2003). Therefore, the opposite condi-

tion (complete absence of floccular process) observed in ti-

tanosaurids is probably related to the cursorial adaptation

(quadrupedalism) but also suggests a lower capacity of

complex movements, including the neck and head. (2) The

dorsum sellae is high and formed by the basisphenoid and

the laterosphenoids. In sauropods, the floor of the endocra-

nial cavity is basically horizontal, and ends anteriorly in a tall

dorsum sellae dorsally projected into the endocranial cavity.

This transversely oriented wall is formed mainly by the ba-

sisphenoid, and the laterosphenoids participate dorsally

sending medial projections that contact its counterpart

on the midline (Paulina Carabajal, 2009a). In contrast, in

theropods the dorsum sellae is formed by the basisphenoid,

and a medial contact between the prootics, which form a

transversal bridge fused to the dorsum sellae (Tykoski,

1998), has been only reported for the coelophysoid Syntar-

sus kayentakatae Tykoski, 1998. A similar situation is ob-

served in adult specimens of Massospondylus (Gow, 1990).

Therefore, in sauropods the laterosphenoid contact on

the mid-line seems to be a conservative character among

dinosaurs. The neurological implications of a dorsally de-

veloped dorsum sellae in dinosaurs are not clear. In other

extinct reptiles such as dicynodonts, the relative develop-

ment of the dorsum sellae has been related to an enlarge-

ment of the hypophysis or pituitary gland (Surkov and

Benton, 2004). This may be valid also for sauropods. Nev-

ertheless, the functional significance of this enlargement is

still obscure (see below). (3) The pituitary fossa is large, pos-

tero-ventrally elongated and tube-shaped (Fig. 13.5–7). In

sauropods, the pituitary fossa is generally a tubular cavity,

longer than wide, postero-ventrally excavated within the

basisphenoid (e.g., Chatterjee and Zheng, 2002; Janensch,

1935–36; García et al., 2008; Knoll and Schwarz-Wings,

2009; Knoll et al., 2012; Paulina Carabajal, 2012). In thero-

pods, on the other hand, the pituitary fossa is a bulbous

cavity projected vertically from the floor of the endocranium

and relatively smaller than that observed in sauropods

(Paulina Carabajal, 2009a). The volume of the fossa relative

to the volume of the endocranial cavity in the studied ti-

tanosaurs (e.g., Antarctosaurus, Bonatitan, Saltasaurus, and

the titanosaurid MGPIFD-GR 118; Paulina Carabajal, 2012)

varies between 5 and 7%. In the studied titanosaurids (e.g.,

Antarctosaurus, Bonatitan, Saltasaurus, and the unnamed ti-

tanosaurids MPCA-Pv 80 and MGPIFD-GR 118), a constric-

tion in the mid-section of the pituitary fossa subdivides it

into two cavities, one anterodorsal (corresponding probably

to the adenohypophysis) and the other posteroventral

(corresponding probably to the neurohypophysis), the last

directly related to the internal carotid veins (Paulina Caraba-

jal, 2012). The striking enlargement of the pituitary fossa

in sauropods suggests the enlargement of the pituitary

gland. Some authors, however, stated that the pituitary

gland has a positive allometric relationship with body size.

Thus, the large pituitary fossa in sauropods just resulted

from their body size (Edinger, 1942). Based on extensive

work on extant mammals, birds, reptiles and amphibians it

is clear that in these forms the anterior lobe of the pituitary

gland is an essential factor in the control of the size and

reproductive cycle (Matthews, 1939). Studies in humans

(Tsunoda et al., 1997) and small mammals (Pankakoski and

Tahka, 1982) stated that the size of the pituitary gland

varies with age and sex, between younger and older sub-

jects and between female and male subjects. The pituitary

gland is greater in mature females than mature males,

and sexual maturation is usually accompanied by adrenal

growth. In humans, the size increases during adolescence

due to normal physiological hypertrophy, but the most

striking physiological changes are seen during pregnancy

when the gland progressively enlarges reaching a maximal

height immediately after birth. The enlarged pituitary fossa

in sauropods may have been prepared to hold an enlarged

gland during the reproductive season, suggesting a fast re-

productive period or large production of eggs by each fe-

male (Paulina Carabajal, 2012). For example, each of the

titanosaurid nests at the Auca Mahuevo site (Chiappe et al.,

2004) has 15–34 eggs. However, extant reptiles such as

crocodiles and turtles lay large numbers of eggs, but have

relatively small pituitary glands compared with sauropods.

On the other hand, if the gland maintained its size during

life, the large size observed in sauropods could be related

mainly to growth function, producing a fast period of growth

in hatchlings that lead to reach the adult size in a few years,

as proposed by several authors (see Griebeler and Werner,

2011 and references therein).

Other braincase characters in titanosaurs are the loca-
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tion of the foramen for the internal carotid arteries. They

enter the basicranium trough foramina located ventrome-

dial to the basipterygoid process (Fig. 13.5), and this is the

reason why the foramina are not visible in a lateral view of

the braincase (Paulina Carabajal, 2012). They penetrate the

pituitary fossa trough separate foramina. Finally, most ti-

tanosaurids are characterized by a single foramen for the

branches of cranial nerves IX-XI and XII respectively. En-

docranially, the floor of the medullar fossa is basically flat

and horizontal, and there is no medullar eminence.

Titanosaur endocranium

The endocranial cavity in titanosaurs is globose, low and

transversely wide (Fig. 13.6). The olfactory tract is extremely

short and horizontally projected in front of the cerebral

hemispheres, unlike the long and antero-dorsally projected

olfactory tract and bulbs in basal sauropods such as

Shunosaurus Dong, Zhou, and Zhang, 1983 (Chatterjee and

Zheng, 2002), Spinophorosaurus Remes et al., 2009 (Knoll

et al., 2012), dicraeosaurids (Janensch, 1935–36) and other

diplodocoids such as Apatosaurus (Balanoff et al., 2010) and

the titanosauriform Giraffatitan (Knoll and Schwarz-Wings,

2009).

The sutures and the vascularization marks are not visi-

ble in the endocranial casts of Bonatitan (Paulina Carabajal,

2012) and the Titanosauria indet. specimen MGPIFD-GR

118 (Paulina Carabajal and Salgado, 2007). This indicates

that the duramater was thick and therefore the brain did not

completely occupy the cavity as has been proposed for

other sauropods (Witmer et al., 2008; Knoll and Schwarz-

Wings, 2009). However, there are differences between

the morphology of these endocrania and those of other

non-titanosaurian sauropods (e.g., Shunosaurus, Camarasau-

rus, Diplodocus) regarding the angle of the cephalic flexure,

inclination of the pituitary fossa, and position and relative

size of the cranial nerves II, III, IV, V and VII, which could

represent characteristics of Titanosauria (Paulina Caraba-

jal, 2012). Unlike Camarasaurus and Diplodocus, the en-

docrania of the Patagonian titanosaurs do not show the

big vascular sinuses that form prominent furrows, recesses

and openings on the endocranial surface (Witmer et al.,

2008). In turn, in the studied titanosaurs, the short olfac-

tory tract and bulbs are horizontal and aligned with the

forebrain, in a similar way to what is observed in the

diplodocoid Nigersaurus (Sereno et al., 2007). Contrarily, in

Camarasaurus and Diplodocus the olfactory bulbs are rela-

tively long and strongly inclined with respect to the longest

axis of the forebrain. This is a result of the caudal retraction

of the nasal cavity and the telescoping of the braincase

(Sereno et al., 2007; Witmer et al., 2008). Nevertheless, ol-

faction seems to have been less important behaviourally in

sauropods in general (Sereno et al., 2007). In the studied

endocasts (Paulina Carabajal, 2012), the olfactory bulb

cavities represent less than 2% of the endocranial cavity

volume, meaning that olfaction was probably not a very well

developed sense in titanosaurids.

Inner ear

The inner ear of sauropods is characterized by a simple

and conical lagena, an anterior semicircular canal larger than

the posterior semicircular canal, and a lateral semicircular

canal smaller than the two other ones (Galton, 1985) (Fig.

13.8–13).

Titanosaurs in particular have short, robust and sube-

qual in size semicircular canals in comparison with other

sauropods (Paulina Carabajal, 2012). Because the develop-

ment of the semicircular canals has been associated with

behavioural patterns that require agility (relation between

the labyrinth and the vestibulo-ocular reflex), the short and

small semicircular canals of sauropods would be reflecting

a decrease of the compensatory movements of eyes and

head (Witmer et al., 2008). The evolutionary morphology

pattern shows a clear reduction of the semicircular canals,

principally the anterior semicircular canal, from the larger

and slender anterior semicircular present in Jurassic basal

forms and diplodocoids (e.g., Spinophorosaurus, Giraffati-

tan) to the short and robust semicircular canals in the Cre-

taceous titanosaur forms (Paulina Carabajal, 2012). This

morphology, together with the assumption of short necks

for this clade, strongly suggests that titanosaurids had

less movement of the neck and head (at least lateral

movements) when compared with other sauropods. There is

evidence across many species showing that labyrinth di-

mensions are closely related to the dynamics of the natural

movement repertoire unique to each species (Clarke, 2005).

Recent studies relate both the simplicity of the inner ear and

the loss of pneumaticity of the middle ear with poor dis-

crimination of low-frequency sounds; as well as with move-
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ments of the neck, head, and eyes, which would have been

rather slow. This in turn is consistent with the loss of the

flocculus of the cerebellum in most sauropods (Witmer et

al., 2008).

DISCUSSION AND CONCLUSIONS

The sample of remains that provide paleobiological

information is yet reduced in comparison with the large

number of titanosaur taxa formally described, and future

discoveries and studies on titanosaurs should test the ex-

tent of the inferences presented here against titanosaurs

as a whole or to subgroups within this diverse clade of

herbivorous dinosaurs. The information presented above

allows a rough characterization of some aspects of ti-

tanosaur paleobiology, based mainly on recent discoveries

and studies from South American specimens. This charac-

terization is summarized as follow:

Titanosaurs laid relatively small eggs (10–25 cm diame-

ter) and most records suggest that they laid a great num-

ber of eggs (up to 35) in excavated nests. It is not certain

whether the eggs had been covered or not, nor if these eggs

were hatched or not. Based on the low fracturing of the

hatched eggs in the Indian oospecies, Mohabey (2005)

suggested that these hatchlings left the nest immediately

after hatching, a condition clearly precocial (see Griebeler

and Werner, 2011). Chiappe et al. (2005) also inferred little

or no parental care of their clutches based on adult size

and proximity between clutches, suggesting that titano-

saurs would have been precocial. Traditionally, the preco-

cial strategy has been interpreted as primitive among

Archosauria (Starck, 1993, 1994). The developmental stage

of the embryos or neonates can be inferred from develop-

ment of the epiphysis of the long bones, which has been

used to infer the altricial vs. precocial condition of some di-

nosaurs (Horner and Weishampel, 1988; Chure et al., 1994;

Horner and Currie, 1994). The osteohistological study of the

Argentinean titanosaur embryos from Auca Mahuevo (ossi-

fication sequence, the relative development of the osseous

tissue of the limb bones) and the presence of certain

anatomical characters (e.g., ‘egg-tooth’-structure) carried

out by García (2008) provided data supporting the altri-

ciality of these titanosaur embryos. Another case of alleged

altriciality was recently inferred for an Early Jurassic sau-

ropodomorph from China, probably belonging to Lufen-

gosaurus Young, 1941 (see Reisz et al., 2013). In summary,

although the evidence is ambiguous for titanosaurs, some

evidence from the Auca Mahuevo embryos suggests a con-

dition closest to altriciality or at least semialtriciality.

Evidence from accumulations of eggs from disparate

localities around the globe indicates that adult titanosaur

individuals likely shared large and probably monospecific

nesting grounds (Sander et al., 2008; Grellet-Tinner and

Fiorelli, 2010; Vilá et al., 2010b), although other records

suggest that contiguous accumulations of eggs of different

sauropod species may have partially overlapped (Salgado et

al., 2009). In some cases, there is evidence that these re-

productive areas were successively used throughout many

nesting seasons. Although we do not know whether the ti-

tanosaur eggs were buried or not, their eggshell probably

changed (water vapor conductance) during incubation, a

topic that should be more thoroughly studied in the future.

While titanosaur skulls are rare, the limited available

evidence suggests their skull morphology varied signifi-

cantly during early ontogenetic stages (for instance, the

snout lengthened markedly), which was surely accompanied

by changes in the food procesing mechanics. These infer-

ences are based on the exceptional findings of titanosaur

embryos at Auca Mahuevo, in which the maxillary teeth

reached a more posterior position than in the skulls of all

taxa from which adult cranial remains are known (e.g., Ne-

megtosaurus, Tapuiasaurus, Rapetosaurus); in this regard, it

is probable that the hatchlings used all the maxillary teeth

for food cutting or processing. However, the type of teeth

is basically similar in embryos/hatchlings from Auca

Mahuevo and in those of the few known adult titanosaur

skulls, which may be indicative of the same basic diet, a de-

velopmental constraint or both. In this regard, although it is

possible that the hatchlings may have eaten softer vegeta-

tion, it is suggestive that their teeth were apparently rela-

tively stronger, with a proportionally thicker enamel layer

and smaller pulp cavities (García and Cerda, 2010a).

The hypothesis that the food procesing mechanics of the

titanosaur embryos/hatchlings was somewhat different

from that in adults is also inferable from the relatively short

skull of the Auca Mahuevo embryos, their non-shortened

infraorbital region, and (probably) the non-confinement of

the teeth to the anterior snout. These features again con-

trast with the morphology of all known adult skulls of ti-
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tanosaurs. Similarly, juvenile Diplodocus has been thought

to have had a different feeding behavior from that of adults,

although in this case such an inference was based mostly

on the fact that the juveniles of Diplodocus are round-

snouted instead square, as in the adults (Withlock et al.,

2010).

As previously mentioned, several (but not all) titano-

saur taxa have an extensive development of Haversian re-

modeling, even in not fully-grown individuals. The relative

abundance of Haversian bone in such taxa could respond to

several, non-mutually exclusive factors. For example, in-

tensive bone remodeling could be linked to the extreme

‘porosity’ of the axial and appendicular skeleton. In titano-

saurs, the precaudal vertebrae are somphospondylous

(=camellate sensu Wedel et al., 2000); moreover, some taxa

reveal internal cavities (probably pneumatic in origin) in the

caudal vertebrae and/or in the ilia (Sanz et al., 1999; Powell,

2003; Salgado et al., 2005; Xu et al., 2006; Hocknull et al.,

2009; Woodward and Lehman, 2009; Cerda et al., 2012). The

presence of pneumatic cavities in the axial skeleton (and

part of the appendicular skeleton) implies the resorption of

a very important volume of bone tissue, and a substantial

reduction on the capabilities of calcium storage. For this

reason, the long bones were probably the main source for

calcium and phosphate of the organism during life, probably

reflected in the extreme cortical remodeling in the long

bones.

Another possible explanation, recently proposed by

Stein et al. (2013) for ankylosaurs, suggests that the high

secondary reconstruction in long bones could be linked to

the osteoderm formation in titanosaurs. In armoured ti-

tanosaurs, long bones could be employed as a mineral

source for osteoderm formation, enhancing the degree of

Haversian tissue in the cortical bone. The heavy secondary

remodeling may have been originated during the early

stages of the dermal armor development, first leading to

early resorption activity in the long bones, then to osteo-

derm formation, and then to increased remodeling of the

limb bones (Stein et al., 2013). The possible relationship be-

tween PSP, osteoderms and secondary bone in titano-

saurs appears as a critical issue to thoroughly test in future

studies.

At least derived titanosaurs probably displayed limb

postures differing from the typical columnar or ‘elephant-

like’ pattern inferred for other sauropods. Specifically,

shoulder and pelvic girdle architecture of titanosaurs sug-

gests a broader posture than that of non-titanosaur

sauropods, which is related to a shift in the specific muscu-

lar attachments that would counteract the wide posture

of the limbs.

Studies on the neuroanatomy of titanosaurs are also

relevant for some paleobiological inferences. The presence

of a floccular recess in the brain of some titanosaurs

such as Nemegtosaurus could support the hypothesis that

certain titanosaurs could occasionally adopt a bipedal pos-

ture, as proposed by Wilson and Carrano (1999). Titanosaur

brain morphology shows a tendency to the reduction of

the midbrain, and reduction of the olfactory tract and

bulbs, meaning that olfaction was probably not a very well

developed sense in titanosaurs. The inner ear is charac-

terized by the reduction of the anterior semicircular canal

and the robustness of the labyrinth in comparison with

non-titanosaurian sauropods. This marked trend is evident

in the evolution of titanosaurs when the plesiomorphic con-

dition present in the Jurassic forms (basal sauropods and

diplodocoids) is compared to the Cretaceous titanosaurs.

Some of the latter would have been capable of capturing

sounds in a relatively wide range of high frequencies, al-

though not to the extent of living birds. Finally, in titano-

saurs the rotation of the braincase based on the position of

the lateral semicircular canal, the reduction of the anterior

semicircular canal of the inner ear, the absence of floccu-

lar process, and the elevated position of the external nares

would have restricted lateral rotation of the head with a

minimal movement of the neck. Although titanosaurs have

a braincase that is less rotated than that of diplodocoids,

the situation would be the same. Detailed studies on neck

morphology and mobility in titanosaurs, however, still need

to be carried out to test this hypothesis.

We have presented here an updated review of recent

advances and current knowledge of the paleobiology of

titanosaurs, principally derived from the study of South

American forms. Among the mentioned topics, titanosaurs

evolved a series of paleobiologically interesting features, in-

cluding a particular dental morphology and position of the

toothrow, changes in neck length and locomotor posture,

differences in their osteohistology, as well as changes in

their neuroanatomy. The topics summarized and reviewed
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here represent advances on the paleobiology of titano-

saurs. Yet, many other topics are required to fully under-

stand titanosaurs as living biological entities, such as their

relationship with different paleoenvironments. For this, pa-

leobotanical and taphonomical data need to be integrated

too. Other topics that look promising and potentially useful

for understanding titanosaur paleobiology are the peculiar

histology of this group and its relationship with the dy-

namics of calcium reservoirs, metabolism, and reproduction.

Paleopathological studies are still underdeveloped for this

group, but future studies on this topic will allow evaluating

titanosaur biology in a context never before dealt with. Fi-

nally, another line of promising research is centered on

some aspects of the dentition of this group, such as dental

histology, dental replacement pattern, and studies on the

chewing mechanism and feeding habits, all of which will

provide data for answering open questions on titanosaur

biology.
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