Paleoenvironment of the Toropí Formation (Upper Pleistocene), Corrientes province (Mesopotamian region, Argentina): A phytolith approach

Georgina Erra a,⁎, Margarita Osterrieth b, Alfredo E. Zurita a, Analía Francia a, Alfredo A. Carlini c

a Centro de Ecología Aplicada del Litoral (CECOAL–CONICET), Corrientes, Argentina
b Centro de Geología de Costas y del Cuaternario, Facultad de Ciencias Exactas y Naturales, UNMdP, Argentina
c División Paleontología de Vertebrados, Museo de La Plata and CONICET, Argentina

A R T I C L E I N F O

Article info
Available online 7 September 2012

A B S T R A C T

Two Pleistocene sedimentary units are recognized in the Corrientes province, Argentina: the Toropí and Yupoi formations. These sediments have proven productive for fossil vertebrates, but few macrofossils have been recovered. To remedy this situation, plant silica (phytoliths) were extracted from the sediments, enabling a direct comparison of paleovegetation data and information based on previous study of vertebrates. The studied samples (n = 28) come from two profiles from the Toropí Stream (28°36′S; 59°02′W), near Bella Vista, Corrientes, from which two Quaternary mammals, Lestodon (Xenarthra) and Hippocamelus (Artiodactyla), have previously been excavated. All samples were productive and contained both non-plant biogenic silica (diatoms, sponge spicular, chrysophyte cysts) and phytoliths. Phytolith assemblages were dominated by morphotypes diagnostic of grasses, in particular C3 pooids, C4 chloridoids, and C3 or C4 panicoids (or related grasses in the PACMAD clade). Rare phytoliths of palms and other woody or herbaceous dicotyledonous angiosperms were also present. This combination of C3 and C4 grasses, and rare palms and other forest indicators, indicates grass-dominated habitats with groves with palms and other trees/shrubs along rivers, growing under a relatively warm and dry climate. This mixed plant community reflects shifting biogeographic affinity with the Chaco-Pampean plain and inter-tropical regions, respectively, linked to the frequent climatic-environmental fluctuations during the Late Pleistocene.

© 2012 Elsevier Ltd and INQUA. All rights reserved.

1. Introduction

During most of the Cenozoic, South America was an island continent, lacking any terrestrial connections to other continental land masses. This long-lasting geographical isolation resulted in a highly endemic vertebrate fauna and flora that cannot be easily compared to other continents (Simpson, 1980; Ricklefs, 2002; Morley, 2003). This biota, in particular the fauna, was significantly restructured during the Great American Biotic Interchange (GABI), which peaked around 3 Ma with the establishment of a land bridge between North and South America; Coates and Obando, 1996. During this mass-dispersal event, mammals (and birds) from North America immigrated and displaced, or coexisted, with South American endemics (Marshall et al., 1982; Stehli and Webb, 1985; Weir et al., 2009). Following immigration, mammals and other biota underwent significant diversification (Webb, 1976; Marshall et al., 1982; Stehli and Webb, 1985; Dacosta and Klicka, 2008). The Pleistocene (c. 2.6–0.011 Ma) represents the ecological aftermath of this intense transformation of South America ecosystems in the context of increasingly fluctuating climates as Earth transitioned into the last Ice Age.

Many recent multidisciplinary studies have sought to reconstruct paleoclimate, paleoenvironment, and faunal biogeography during this ecologically important time. A classic area of focus is the current Mesopotamian region in Argentina (Carlini et al., 2008; Orfeo et al., 2009). The interpretations of paleoenvironmental context in which the Quaternary biota developed, together with detailed faunal analyses performed in the area (Scillato-Yané et al., 1998, 2005; Zurita and Lutz, 2002; Tonni, 2004; Carlini et al., 2003, 2004, 2008; Gasparini and Zurita, 2005; Ferrero and Noriega, 2007; Zurita and Ferrero, 2009, among others) suggest that the northern part of the current Mesopotamian region in Argentina had a biological connection to the southern part of Brazil and western Uruguay, particularly during the wet and warm pulses of the late Pleistocene (Carlini et al., 2003, 2004; Francia and Carlini, 2009). In the past, most of the knowledge of paleoenvironment has come from the study of vertebrates, whereas paleobotanical work has been limited (see Orfeo et al., 2009). The Pleistocene deposits in Mesopotamia consist of two fossil-rich lithostratigraphic units: the
Toropi and Yupoi formations, both representing floodplain sedimentation. Extracted biosilica (phytoliths) from the Toropi and Yupoi formations from a site in the province of Corrientes constitutes the first fossil record of plants in this region. The main objective of this contribution is to analyze these phytolith assemblages to provide a paleoenvironmental interpretation for the late Pleistocene of northeastern Argentina that can be compared to the faunal record in this region.

1.1. Study area: biotas, climates and environments

The Mesopotamian region of Argentina covers 200,000 km² between the current Paraná and Uruguay rivers, and includes the territories of Misiones, Corrientes and Entre Ríos provinces (Aceñolaza, 2007). Within Mesopotamia, the Corrientes province covers an area of 88,800 km² (Fig. 1). Geomorphologically, the province belongs to a vast sedimentary basin that constitutes a part of ancient shelf relief.

Within the Corrientes province, the area surrounding the town of Bella Vista has a climate described as wet subtropical, characterized by relatively equable temperatures and regular rains throughout the year (Fig. 1). The Mean Annual Temperature (MAT) is 20.9 °C. Soils in the region range from poorly developed over modern sediments to better developed with the formation of A–B–C horizons on top of older material, resulting in Entisols (the least developed soils, on sandy parent material), Mollisols and Alfisols (well developed soils that typically reflect grasslands and forest, respectively) (Herbst and Santa Cruz, 1999). Phytogeographically, the town of Bella Vista is in the Chaco Eastern District (Cabrera, 1976), part of the Mesopotamian parkland. This can be described as a savanna parkland, with mesophyllous, xerophilous and xero-halophilous forests in terrace levels on the river banks and topographic highs, mesophyllous to hygrophilous savannas and abundant weeds in topographic lows, sub-concave plains and sandy ridges, Syagrus palm groves in sandy hillocks, a marshy and aquatic vegetation complex, Copernicia palm groves and xero-halophilous forests in large depressions of old creeks (Carnevali, 1994).

1.2. Previous approaches: geology and paleontology

1.2.1. Geologic setting and stratigraphy

The geological history of the Quaternary deposits in the province of Corrientes has historically been controversial. Álvarez (1974) initially recognized only one unit for the area, the Yupoi Formation. Based on re-study of fossil vertebrates, minerals from the sand fraction, and clay analysis, Herbst and Álvarez (1977) and Herbst and Santa Cruz (1985) later acknowledged two successive units, the Toropi Formation and the Yupoi Formation, but kept the chronology suggested by Álvarez (1974). More recently, Iriondo (1996) suggested combining the units into a “Toropi/Yupoi Formation” and correlating this new unit to the Hernandarias Formation (Middle Pleistocene, between 0.8 and 1.3 Ma). In contrast, a new analysis of fossil mammals in the area (Scillato-Yané et al., 1998) indicates an age for the sequence (Toropi Formation/ Yupoi Formation) comparable to that of the ‘Lujanense’ sensu lato, that is, Middle Pleistocene–Early Holocene (Cione and Tonni, 1995).

Finally, recent dating analyses using Optically Stimulated Luminescence (OSL) of the deposits have resulted in ages between 58 ka (for the Toropi Formation) and 36 ka (for the Yupoi Formation), “Lujanense’ sensu strict (Late Pleistocene–Early Holocene) (Tonni et al., 2005; Tonni, 2007; Carlini et al., 2008). Lithologically, the Toropi Formation is composed of clayey sand, sandy limestone, and sandy clay. The Yupoi Formation consists of pelitic sandstone with variable portions of sandy limestone and sandy clay (Herbst and Santa Cruz, 1999). These units represent floodplain deposits, and are broadly distributed, covering a large part of the western and eastern sections of the Corrientes province along the Paraná and
Uruguay, respectively (Herbst and Álvarez, 1975). These Pleistocene units unconformably overlie sandy deposits of the Ituzaingó Formation (Late Miocene—Pliocene), which consist of mineralogically unsorted sands and sporadic, but distinct finer-grained deposits. Both units have broad distributions in Corrientes along the slopes of the Paraná River and distributaries (the Ambrosio Stream, the Santa Lucía River), as well as in some localities along the banks of the Uruguay River and its tributaries, such as the Miriñay (Herbst and Santa Cruz, 1985).

1.2.2. Paleontological evidence

The Toropi and Yupoi formations are both highly fossiliferous (see Herbst, 1971; Iriondo, 1973; Herbst and Álvarez, 1975), and preserve an important and varied fauna of mega- and micro-mammals. The Pleistocene fauna, which has been collected primarily from the outcrops on both margins of the Toropi Colonia Progreso Stream, Department of Bella Vista, is the most diverse fauna found in a single location (see Álvarez, 1974; Scillato-Yané et al., 1998; Zurita and Lutz, 2002; Alcaraz and Carlín, 2003; Carlín et al., 2004; Alcaraz and Francia, 2010; Francia et al., 2010). Invertebrate faunas (pelecypod molluscs, Morton and Jaffin, 1987; Herbst and Santa Cruz, 1999; Morton, 2004) that have recently been described add to the knowledge of the animal communities represented in this unit.

The Late Pleistocene vertebrate faunal record in the province of Corrientes show clear compositional changes through time, linked to fluctuations in climate. Specifically, the changes in diversity are consistent with pulses of colder and arid to semiarid climate (presence of Neosclerocalyptus paskoensis, Morton, 2004) that have recently been described add to the knowledge of the animal communities represented in this unit.

Within Mesopotamia, several studies of phytolith assemblages have been conducted on Neogene deposits of the province of Entre Ríos, namely the marine, middle Miocene Paraná Formation in the Paraná River basin (Zucol and Brea, 2000a, 2000b), the continental, early Pleistocene deposits of the Alvear Formation (Zucol and Brea, 2001, 2005, in press), and the late Pleistocene—Holocene Tezanos Pinto Formation (Kröling et al., 2005; Erra et al., 2006; Erra, 2010a,b, 2011; Erra et al., 2011). In the Uruguay River basin, late Pleistocene phytolith assemblages from a site in the “Parque Nacional El Palmar” of the El Palmar Formation have been analyzed (Zucol and Brea, 2001; Brea et al., 2001a,b; Zucol et al., 2005). In contrast, no work on phytoliths has so far been carried out in the Corrientes province and, given the lack of macrofossils and palynomorphs in the deposits, very little independent evidence for vegetation for this area exists. The goal of this paper is to supply such a paleobotanical record for the late Quaternary of the mid-latitudes of Mesopotamian Argentina and compare it to the associated faunal record, as well as to phytolith assemblages of equivalent age from other formations.

2. Materials and methods

Sections were measured and samples collected for phytolith extraction from the Toropi and Yupoi formations that crop out in the Toropi Stream area (28°36’S, 59°02’W), about 10 km south of the town of Bella Vista, Colonia Progreso, Corrientes province, Argentina (Fig. 1). This stream runs SE—NW, almost at 90° to the course of the Paraná River, into which it flows. It is over 3 km long, with a maximum width of about 500 m (Álvarez, 1974). Two representative profiles, S1 and S2, respectively, were selected, where the remains of two Quaternary mammals, Lestodon (Xenarthra, Phyllophaga) (Scillato-Yané et al., 1998) and Hippocamelus (Artiodactyla, Cervidae) (Alcaraz, 2010) have previously been excavated. Sedimentological and paleosol descriptions were carried out following standards established by the Soil Survey Staff (1996) (Tables 1 and 2).

<table>
<thead>
<tr>
<th>Sample</th>
<th>Depth (cm)</th>
<th>Color</th>
<th>Structure</th>
<th>Texture</th>
<th>Consistency</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>7.50–7.20 m</td>
<td>2.5 Y5/2</td>
<td>Structureless</td>
<td>Silt loam</td>
<td>Friable</td>
</tr>
<tr>
<td>M2</td>
<td>6.50–6.20 m</td>
<td>5Y6/4</td>
<td>Structureless</td>
<td>Silt loam</td>
<td>Friable</td>
</tr>
<tr>
<td>M3</td>
<td>5.50–5.20 m</td>
<td>5Y7/3</td>
<td>Laminar</td>
<td>Silty-clay loam</td>
<td>Friable</td>
</tr>
<tr>
<td>M4</td>
<td>4.50–4.20 m</td>
<td>5Y6/4</td>
<td>Laminar</td>
<td>Silty-clay loam</td>
<td>Friable</td>
</tr>
<tr>
<td>M5</td>
<td>3.50–3.20 m</td>
<td>5Y6/2</td>
<td>Laminar</td>
<td>Silty-clay</td>
<td>Friable</td>
</tr>
<tr>
<td>M6</td>
<td>2.50–2.20 m</td>
<td>5Y6/3</td>
<td>Laminar</td>
<td>Silty-clay</td>
<td>Friable</td>
</tr>
<tr>
<td>M7</td>
<td>1.50–1.20 m</td>
<td>5Y6/2</td>
<td>Laminar</td>
<td>Silt–clay</td>
<td>Very hard—Adhesive—Plastic</td>
</tr>
<tr>
<td>M8</td>
<td>0.90–1.20 cm</td>
<td>2Y2/1</td>
<td>Prisms large—Moderate/Strong</td>
<td>Silt–clay</td>
<td>Very hard—Adhesive—Plastic</td>
</tr>
<tr>
<td>M9</td>
<td>0.63–0.90 m</td>
<td>2Y5/1</td>
<td>Large—Moderate/Strong Prisms</td>
<td>Silt–clay</td>
<td>Slightly hard—Slightly adhesive—Slightly plastic</td>
</tr>
<tr>
<td>M10</td>
<td>0.43–0.63 m</td>
<td>10YR2/2</td>
<td>Medium—Moderate Blocks</td>
<td>Silty-clay</td>
<td>Hard—Adhesive—Plastic</td>
</tr>
<tr>
<td>M11</td>
<td>0.30–0.43 m</td>
<td>10YR3/2</td>
<td>Fine—Strong Blocks</td>
<td>Silty-clay</td>
<td>Hard—Adhesive—Plastic</td>
</tr>
<tr>
<td>M12</td>
<td>0.15–0.30 m</td>
<td>10YR3/2</td>
<td>Fine—Strong Blocks</td>
<td>Silt loam</td>
<td>Friable</td>
</tr>
<tr>
<td>M13</td>
<td>0–0.15 m</td>
<td>10YR4/2</td>
<td>Granular, Fine Weak</td>
<td>Silt loam</td>
<td>Soft, Non adhesive Non plastic</td>
</tr>
<tr>
<td>M14</td>
<td>Current soil-Hz</td>
<td>10YR5/1</td>
<td>Granular, Fine Weak</td>
<td>Silt loam</td>
<td>Soft, Non adhesive Non plastic</td>
</tr>
</tbody>
</table>
Samples were obtained through even sampling from base to top of the sections (Fig. 2). The profiles were cleaned beforehand in order to prevent any contamination. In the S1 (“Lestodon”) profile (Fig. 2A), the seven lowermost samples were taken every 1 m on average in the Quaternary formations, and the upper seven with decreasing sampling intervals through the modern soil. In all cases, 250 g of sediment was collected. In the espacio S2 (Fig. 2B), 14 samples were taken every 0.20 m (above 2.50 m) is characterized by typical features of the parental materials: argillic endopedons and mollic epipedons. These features of well developed Mollisol and Alfisol paleosols are predominant in these sequences.

3.1. Profile S1 biosilica microremains

The amount of silica phytoliths as a weight percentage of the total inorganic component varies between 4.03% and 21.85% through the profile S1 sequence (Fig. 2A). The highest yields were from the modern soil, and the lowest yields from samples from the Yupoí Formation. Apart from phytoliths, other biosilica microremains were found, such as sponge spicules, diatoms, and chrysophyte cysts. The spicules were found in every sample in low frequencies (0.2–1.5%), as were diatoms (0–2%), which reached their maximum amount in the M1 (Toropí Fm.), M12, M13 and M14 (modern soil) samples (2%). Chrysophyte cysts were found exclusively, and always in low abundances (0–4%) in the modern soil samples (M11, M12, M13 and M14).

In general, phytolith assemblages from profile S1 contained a same set of morphotypes, but varied in their relative abundances of these morphotypes through the sequence (Fig. 3). Rondel short cells (Fig. 4E, G) were abundant throughout the section, reaching their highest values in the lower samples (above 40% in M1, M2, M3, M4, M5, M6, M7), and 54% of the phytolith total in M2. Saddles (Fig. 4C) were the next most abundant morphotypes, and decreased from bottom (16.61% in M1) to top (11.7% in M14) in the profile. Conversely, acicular hair cells, cuneiform bulliforms, and elongate sinuate/echinate morphotypes increased towards the top of the section. Acicular hair cells were most frequent in the upper samples (M11, M12, M13, M14), reaching values of 19.00% in M13. Bulliform cells reached their highest abundance in M12 (9.46% of the phytolith total). Elongate sinuate phytoliths (Fig. 4L), reached 25–30% in M10 and M11 respectively. Other morphotypes that were consistently present include bilobates (Fig. 4D, K), which varied between 6 and 10%, with their highest peaks in M14 (21.23%) and in M3 (17.92%), and elongate pilate (Fig. 4M), with values between 3.26% in M5 and 11.79% in M14. Other rare phytolith morphotypes were pyramidal, globular pilates, globular echinates, polygonal epidermal cells and square plates, crosses (Fig. 4I), silicified vascular (conduction) elements, other plates and irregular elongates. The fraction of unidentified phytoliths was below 2%.

The cluster analysis performed on the unarticulated phytoliths from profile S1 (“Lestodon”) resulted in three main clusters. The oldest samples in the section (M1–M7) form a cluster that is characterized by relatively high abundances of rondels and saddles and the presence of globular smooth; this group has a 96% similarity (Fig. 3A). The next cluster (M8–M10) has moderately high abundance of rondels, elongate sinuate, and presence of crosses and conduction elements. A cluster containing the youngest
samples (M11–M14) is typified by low abundance of rondels and saddles, and high abundance of elongate sinuate, cuneiform bulliform cells and acicular hair cells.

3.2. Profile S2 (“Hippocamelus”) description

Profile S2, from which the remains of Hippocamelus (Artiodactyla, Cervidae) were excavated, is lithologically uniform (Table 2; Fig. 2B). Only in the base of the sequence are olive-colored sediments, more indurated, and have abundant black manganese and iron coatings. Calcium carbonate is found throughout the profile.

3.2.1. Profile S2 biosilica microremains

In profile S2, the percentage of silica phytoliths varies between 2.34% and 12.89% of the total inorganic components (Tables 1 and 2), with the highest values in samples closer to the top of the section. The phytolith morphotypes represented are similar throughout the profile (Fig. 3). The predominant morphotype in all samples is rondel short cells (Fig. 4F), with a maximum of 49% in
M14, a minimum value of 8.7% in M4, and varying between 22 and 44% in the rest of the samples. Bilobate short cells (Fig. 4H, J, L) are the second most abundant phytolith type. They range in relative abundance from 7 to 28% through the section, with values well above 20% in M9–M11, whereas samples close to the base of the section (M1–M6) have on average ~15% bilobates. Elongate pslates were found in relatively high frequencies, ranging from 2.5% in M11 and M6, to a maximum abundance of 15% in M5 (Fig. 3).
Acicular hair cell, cross, saddle, polyhedral epidermis, cuneiform bulliform, and elongate sinuate/echinate types were found in all samples, but in low relative abundances (Fig. 3). Globular psilate and globular echinate (Fig. 4A) were found in very low frequencies.

The cluster analysis performed on the phytolith assemblages from Profile S2 ("Hippocamelus") clustered 90% of samples, resulting in one smaller cluster of the oldest samples (M1–M3) and a larger cluster containing all other samples but one (M4) (Fig. 3B). The latter group is subdivided into four smaller clusters. The oldest cluster has predominantly rondels, abundant elongate psilate, low frequencies of elongate psilate and saddles, and no acicular hair cells, a cluster with M7 and M8 is typified by the presence of bilobates, rondels, acicular hair cells, and low abundances of saddles and cuneiform bulliform cells, the second to youngest cluster (M9–M11) has lower frequencies of rondels and elongate sinuate, and relatively high abundances of bilobates and saddles, and the youngest cluster (M12–M14) is characterized by abundant rondels and elongate sinuate, and the presence of acicular hair cells and cuneiform bulliform cells.

4. Discussion

Changes in vegetation in South America during the Miocene and the Pliocene are thought to have been influenced by the progressive decline in global temperatures and the increase in aridity, likely linked with several factors such as the rise of the Andes, changes in oceanic and atmospheric circulation, the development of the Antarctic ice-sheet, the continental–ocean relation and ongoing Andean volcanism (Coira et al., 1982; Barreda et al., 2007). During the Pleistocene Ice Age, the alternation of glacial and interglacial periods had a profound influence on the distribution and composition of vegetation. Both climatic variability and the high frequency in climatic shifts imposed a unique stress on the biota and caused isolation of communities, reduction and fragmentation of habitats and impoverishment of floras established during the Paleogene and Neogene (Markgraf and McGlone, 2006). Previous work has shown that Anacardiaceae, minosoid Fabaceae, and palm forests may have developed in wet and warm-temperate conditions during the EI 5 interglacial period (Barreda et al., 2007).

The paleobotanical record, including phytolith assemblages, representing the Pleistocene in the Mesopotamia differs from the Miocene record (e.g., Barreda et al., 2007). Although the same taxa (e.g., palms, different grass subclades) seem to have persisted in the region into the Quaternary, relative abundance composition and, hence, vegetation structure of the floras varied; this variation appears to be tied to different fluvial facies of the rivers Paraná and Uruguay. For example, Erra (2010a) described phytolith assemblages from formations coeval with the Toropi and Yupoi formations in the Argentinean Mesopotamia (e.g., Tezanos Pinto Formation, Entre Ríos province) that indicate open grazing land with an abundant palm trees. The grass community reflected in these assemblages was made up mainly of panicoids and chlor- idoids mixed with pooids, particularly stipoids, forming a mesothermal community (sensu Burkart, 1975); the associated palms
and sedges further indicate wet conditions (e.g., Uhl and Dransfield, 1987; Strömberg, 2004; Piperno, 2006).

The phytolith records from the Corrientes region indicate that open, grass-dominated communities developed in fluvial–lacustrine environments in Argentinean Mesopotamia by the middle Pleistocene. Based on changes in composition through profile S1, these grass-dominated habitats were initially dominated by non-stipoid pooid grasses (producing rondels) with a lower but consistent contribution from chloroid grasses (producing saddles). Further up section, in particular in the modern soil, these grass lineages appeared to have become slightly less abundant, resulting in a relatively higher contribution from potential panicoid grasses or other grasses within the PACMAD (Panicoeae, Arundinoideae, Chloridoideae, Micrairoideae, Aristiidoideae, Danthonioideae; Aliscioni et al., 2012) clade producing bilobates and crosses, which remains moderately abundant through the section. Profile S2, which covers an interval of time corresponding to the base of profile S1, shows no consistent change in relative abundances of grass subclades but is consistent with profile S1 in reflecting high abundances of pooids and moderate abundances of chlorioids and panicoids. Relatively even, low frequencies of palms, and low to high frequencies of diatoms, sponge spicles and chrysophyte cysts through the section suggest habitats situated over water; low abundances of morphotypes indicative of woody and herbaceous dicotyledonous angiosperms indicate that the vegetation included a few trees or shrubs.

Because particular grass subclades tend to be associated with different climatic conditions, the phytolith assemblages can also shed light on climate during the Pleistocene of the Argentinean Mesopotamia. Specifically, the Pooidae subfamily C3 grasses that tend to dominate cool-temperate or high-elevation grasslands, the Chloridoideae subfamily contain grasses with C4 photosynthetic pathway found in warm and arid climates, and the Panicoeae subfamily, are either C3 or C4 and generally from tropical or subtropical regions (Twiss, 1992; Kellogg, 2001; Edwards and Smith, 2010). The mix of pooids, chlorioids, and potential panicoids should point to a relatively warm, semi-arid climate.

Thus, the phytolith data and information from the associated mammalian fauna suggest that the climate in the Mesopotamian region was very different from that inferred for the Pampean region, central-northern Argentina, Paraguay, and southern Bolivia. In the Chaco-Pampean plains climate is thought to have been relatively cold and arid during the Pleistocene (Tonni et al., 1999). In contrast, for at least the main part of the Pleistocene, the Mesopotamian region would have had a more humid and warmer climate, with a marked influence from Brazilian climatic conditions, that would have continued even during the second-to-last interglacial period (Scillato-Yané et al., 2002; Carlini et al., 2004).

5. Conclusion

Phytolith assemblages associated with mammalian faunas from the Pleistocene Toropí and Yupoi formations in Argentinean Mesopotamia were analyzed. All the analyzed samples showed a predominance of grass phytoliths, with a low frequency of morphotypes from forest indicator taxa. Grass phytolith assemblages were dominated by forms produced in abundance by C3 pooid grasses, but also contained moderate frequencies of phytoliths typical of C4 and chlorioid C3 or C4 panicoids (or other PACMAD grasses). This mix of C3 and C4 grasses indicate relatively warm and dry climates. However, the relatively consistent presence of palm phytoliths and non-plant biosilica wetland indicators (diatoms, sponges, chrysophyte cysts) point to a riparian element on the landscape. This reconstructed climate and vegetation—grasslands with groves of palms and other trees of shrubs—are consistent with paleoenvironmental interpretations based on faunas recovered from the same sediments. It also fits well with work dating the sediments to between 58 ka and 36 ka (within MIS 3). Based on these lines of evidence, frequent climatic-environmental variations during the Late Pleistocene led to a fluctuation in biogeographic connections between the Mesopotamian region and other parts of South America. During certain times, Mesopotamia would have been more closely linked to the Chaco-Pampean plain and, during other times, to inter-tropical regions. This may have influenced the development of mesothermal, grass-dominated ecosystems (sensu Burkart, 1975), formed by a mix of C3 and C4 grasses, which today inhabit mainly warm-temperate regions.

Acknowledgements

This research has been financially supported (PICTO 07/164 to AAC, and UNMdP, project 15/E 551/2011) to MO. We thank C.A.E. Strömberg for helping improve the manuscript.

References
